
I B  D I P LO M A  P R O G R A M M E
David Homer

O X F O R D  I B  P R E P A R E D

PHYSICS



iii

Introduction iv

1 Measurements and uncertainties

1.1 Measurements in physics 2
1.2 Uncertainties and errors 5
1.3 Vectors and scalars 7

2 Mechanics

2.1 Motion 10
2.2 Forces 13
2.3 Work, energy and power 17
2.4 Momentum 21

3 Thermal physics

3.1 Temperature and energy changes 25
3.2 Modelling a gas 28

4 Oscillations and waves

4.1 Oscillations 34
4.2 Travelling waves  36
4.3 Wave characteristics  40
4.4 Wave behaviour  43
4.5 Standing waves  47

5 Electricity and magnetism

5.1 Electric fields 52
5.2 Heating effect of an electric current  55
5.3 Electric cells  59
5.4 Magnetic effects of electric currents  61

6 Circular motion and gravity

6.1 Circular motion 66
6.2 Newton’s law of gravitation 68

7 Atomic, nuclear and particle physics

7.1 Discrete energy and radioactivity 72
7.2 Nuclear reactions 76
7.3 The structure of matter 78

8 Energy production

8.1 Energy sources 84
8.2 Thermal energy transfer 88

9 Wave phenomena (AHL)

9.1 Simple harmonic motion 92
9.2 Single-slit diffraction 96
9.3 Interference 97
9.4 Resolution 101
9.5 The Doppler effect  102

10 Fields (AHL)

10.1 Describing fields 106
10.2 Fields at work 109

11 Electromagnetic induction 
 (AHL)

11.1 Electromagnetic induction 116
11.2 Power generation and transmission 118
11.3 Capacitance 122

12 Quantum and nuclear 
 physics (AHL)

12.1 The interaction of matter with radiation 128
12.2 Nuclear physics 133

13 Data-based and practical questions 
 (Section A) 140

A Relativity

A.1 Beginnings of relativity 146
A.2 Lorentz transformations  148
A.3 Spacetime diagrams 152
A.4 Relativistic mechanics (AHL) 156
A.5 General relativity (AHL) 158

B Engineering physics

B.1 Rigid bodies and rotational dynamics 164
B.2 Thermodynamics 168
B.3 Fluids and fluid dynamics (AHL)  174
B.4 Forced vibrations and resonance (AHL) 178

C Imaging

C.1 Introduction to imaging 182
C.2 Imaging instrumentation 188
C.3 Fibre optics 193
C.4 Medical imaging (AHL) 196

D Astrophysics

D.1 Stellar quantities 202
D.2 Stellar characteristics and stellar evolution 205
D.3 Cosmology 210
D.4 Stellar processes (AHL) 214
D.5  Further cosmology (AHL)  217

Internal assessment 221    

Practice exam papers 226

Index 241

Contents

Answers to questions and exam papers in this book can be found 
on your free support website. Access the support website here:

www.oxfordsecondary.com/ib-prepared-support

iii



You must know:
 ✔ the definitions of fundamental and derived  

SI units

 ✔ what is meant by scientific notation 

 ✔ the meaning of metric multipliers

 ✔ that significant figures are used to indicate 
levels of precision in measurements

 ✔ what is meant by an order of magnitude 

 ✔ what is meant by an estimation.

You should be able to:
 ✔ use SI units in a correct format when expressing 

measurements, final calculated answers and 
when you are presenting raw and processed data

 ✔ use scientific notation in conjunction with 
metric multipliers to express answers and data 
in as concise a way as possible

 ✔ quote and compare ratios, values, estimations 
and approximations to the nearest order of 
magnitude

 ✔ estimate quantities to an appropriate number of 
significant figures.

Scientists need a shared language to communicate between themselves 
and with the wider public. Part of this language involves agreeing 
the units used to specify data. For example, if you are told that your 
journey to school has a value of 5000 then you need to know whether 
this is measured in metres (originally a European measure) or fet (an 
old Icelandic length measure).

The agreed set of units and rules is known as the Système Internationale 
d’Unités (almost always abbreviated as SI). In this system, seven 
fundamental (base) units are defined and all other units are derived from 
these. You are required to use six of the seven fundamental units; the 
seventh is the unit of luminous intensity, the candela, that is not used 
in the IB Diploma Programme physics course.

The six fundamental units you will use in the DP physics course are 
shown in this table.

The change in definitions of the 
SI fundamental units in May 2019 
does not affect your IB Diploma 
Programme (DP) learning as you are 
not required to know the definitions 
except as indicated in the subject 
guide. However, you should be 
aware that textbooks written 
before this date may give the older 
definitions.

Measure Unit Abbreviation

mass kilogramme kg

length metre m

time second s

quantity of matter mole mol

temperature kelvin K

current ampère A

There are many other derived units used in the course and the 
expression of these in fundamental units is usually given in this book 
when you meet the derived unit for the first time. Examples of these 
derived units include joule, volt, watt, pascal.

        Assessment tip

In physics, unless you are 
providing a final answer as a ratio 
or as a fractional difference, you 
must always quote the correct 
unit with your answer. Marks can 
be lost in an examination when a 
unit is missing or is incorrect.

You should always link your 
answer value to its unit (together 
with the prefix where appropriate).

MEASUREMENTS AND 
UNCERTAINTIES1
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Often, the use of a derived unit avoids a long string of fundamental 
units at the end of a number, so 1 volt ≡ 1 J C−1 ≡ 1 kg m2 s−3 A−1.

There are also some units used in the course that are not SI. Examples 
include MeV c−2, light year and parsec. These have special meaning 
in some parts of the subject and are used by scientists in those fields. 
Their meaning is explained when you meet them in this book.

The SI also specifies how data in science should be written. Numbers in 
physics can be very large or very small. Expressing the diameter of an 
atom as 0.000 000 000 12 m is unhelpful; 1.2 × 10−10 m is much better. This 
format of n.nn × 10n is known as scientific notation and should be used 
whenever possible. It can also be combined with the SI prefixes that  
are permitted.

SI prefixes are added in front of a unit to modify its value, so 1012 s 
can be written as 1.012 ks. The full list of prefixes that you are 
allowed is included in the data booklet and you can refer to it  
during examinations.

Prefix Symbol Factor Decimal number

deca da 101 10

hecto h 102 100

kilo k 103 1 000

mega M 106 1 000 000

giga G 109 1 000 000 000

tera T 1012 1 000 000 000 000

peta P 1015 1 000 000 000 000 000

deci d 10−1 0.1

centi c 10−2 0.01

milli m 10−3 0.001

micro µ 10−6 0.000 001

nano n 10−9 0.000 000 001

pico p 10−12 0.000 000 000 001

femto f 10−15 0.000 000 000 000 001

There are some rules here too.

• Only one prefix is allowed per unit, so it would be incorrect to write 
2.5 µkg for 2.5 mg.

• You can put one prefix per fundamental unit, so 0.33 Mm ks−1 would 
be acceptable for 330 m s−1 (the speed of sound in air) but nowhere 
near as meaningful. 

Significant figures (sf) can lead to confusion. It is important to 
distinguish between significant figures and decimal places (dp). For 
example:

• 2.38 kg has 3 sf and 2 dp

• 911.2 kg has 4 sf and 1 dp.

The rule for the number of sf in a calculated answer is quite clear. 
Specify the answer to the same number as the quantity in the question 
with the smallest number of sf.

        Assessment tip

Many marks are lost through 
careless use of units in every 
DP physics examination. When 
a question begins ‘Calculate, in 
kg, the mass of…’, if you do not 
quote a unit for your answer then 
the examiner will assume that 
you meant kg. If you worked the 
answer out in g and did not say so, 
then you will lose marks.
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Sometimes estimations are required in physics. This is because either:

• an educated guess is needed for all or some of the quantities in a 
calculation, or

• there is an assumption involved in a calculation.

Often it will be appropriate to express your answer to an order of 
magnitude, meaning rounded to the nearest power of ten. The best 
way to express any order of magnitude answers is as 10n, where n is an 
integer.

Example 1.1.1

A snail travels a distance of 33.5 cm in 5.2 minutes.

Calculate the speed of the snail.

State the answer to an appropriate number of significant figures.

Solution
The answer, to 7 sf, is 1.073718 × 10−3 m s−1.

It is incorrect to quote the answer to this precision as the time 
is only quoted to 2 sf (the fact that 5.2 minutes is 312 s is not 
important). The appropriate answer is 1.1 × 10−3 m s−1 (or 1.1 mm s−1 
if you prefer).

Example 1.1.2

Estimate the number of air molecules in a room.

Solution
The calculation is left for you, but you should use the following 
steps.

• Estimate the volume of a room by making an educated guess at 
its dimensions, in metres.

• The density of air is about 1.3 kg m−3—call it 1 kg m−3 to make the 
numbers easy later.

• The mass of 1 mol of oxygen molecules is 32 g and 1 mol of 
nitrogen is 28 g—call the answer 30 g for both gases combined.

• Each mole contains 6 × 1023 molecules.

 The volume and density → mass of gas in room and molar mass → 
number of moles and Avogadro’s number → answer.

        Assessment tip

In Example 1.1.1, rounding up is 
needed. You should do this for 
every calculation– but only at 
the very end of the calculation. 
Rounding answers mid-solution 
leads to inaccuracies that may 
take you out of the allowed 
tolerance for the answer. Keep all 
possible sf in your calculator until 
the end and only make a decision 
about the sf in the last line. In 
Example 1.1.1, an examiner would 
be very happy to see … 

= 1.073718 × 10−3 m s−1 so  
the speed of the snail is  
1.1 × 10−3  m s−1 (to 2 sf) …  
as your working is then  
completely clear.

        Assessment tip

You may see order of magnitude 
answers in Paper 1 (multiple 
choice) written as a single integer. 
When the response is, say, 7, this 
will mean 107.

It is also permissible to talk about 
‘a difference of two orders of 
magnitude’; this means a ratio 
of 100 (102) between the two 
quantities.

        Assessment tip

If the command term ‘Estimate’ 
is used in the examination, it will 
always be clear what is required 
as you will lack some or all data 
for your calculation if an educated 
guess is needed. In estimation 
questions, such as Example 1.1.2, 
make it clear what numbers you 
are providing for each step and 
how they fit into the overall 
calculation.
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All measurement is prone to error. The Heisenberg uncertainty 
principle (Topic 12) reminds us of the fundamental limits beyond 
which science cannot go. However, even when the data collected are 
well above this limit, then two basic types of error are implicit in the 
data you collect: random error and systematic error.

Random errors lead to an uncertainty in a value. One way to assess 
their impact on a measurement is to repeat the measurement several 
times and then use half the range of the outlying values as an estimate 
of the absolute uncertainty.

You must know:
 ✔ what is meant by random errors and systematic 

errors

 ✔ what is meant by absolute, fractional and 
percentage uncertainties

 ✔ that error bars are used on graphs to indicate 
uncertainties in data

 ✔ that gradients and intercepts on graphs have 
uncertainties.

You should be able to:
 ✔ explain how random and systematic errors can 

be identified and reduced

 ✔ collect data that include absolute and/or 
fractional uncertainties and go on to state these 
as an uncertainty range

 ✔ determine the overall uncertainty when data 
with uncertainties are combined in calculations 
involving addition, subtraction, multiplication, 
division and raising to a power 

 ✔ determine the uncertainty in gradients and 
intercepts of graphs.

1 . 2   U N C E R TA I N T I E S  A N D  E R R O R S

Random errors are unpredictable 
changes in data collected in an 
experiment. Examples include 
fluctuations in a measuring 
instrument or changes in the 
environmental conditions where 
the experiment is being carried out.

Systematic errors are often 
produced within measuring 
instruments. Suppose that an 
ammeter gives a reading of +0.1 A 
when there is no current between 
the meter terminals. This means 
that every reading made using the 
meter will read 0.1 A too high. The 
effect of a systematic error can 
produce a non-zero intercept on 
a graph where a line through the 
origin is expected.

Uncertainty in measurement is expressed in three ways.

Absolute uncertainty: the numerical uncertainty associated with a quantity. 
For example, when a length of quoted value 5.00 m has an actual value 
somewhere between 4.95 m and 5.05 m, the absolute uncertainty is ± 0.05 m. 

The length will be expressed as (5.00 ± 0.05) m.

Fractional uncertainty =
absolute uncertainty in quantity

numerical value of quantity
.  

A fractional uncertainty has no unit.

Percentage uncertainty = fractional uncertainty 100×  expressed as a 
percentage. There is no unit.

Example 1.2.1

Five readings of the length of a small table are made. The data 
collected are:

0.972 m, 0.975 m, 0.979 m, 0.981 m, 0.984 m

a) Calculate the average length of the table.

b) Estimate, for the length of the table, its:

 i) absolute uncertainty

 ii) fractional uncertainty

 iii) percentage uncertainty.

5
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Solution
a)  The average length is:

 (0.972 + 0.975 + 0.979 + 0.981 + 0.984)
5

= 0.978(2)m

b) i)  The outliers are 0.972 and 0.984 which differ by 0.012 m. Half 
this value is 0.006 m and this is taken to be the absolute uncertainty.

  The length should be expressed as (0.978 ± 0.006) m.

   (This absolute error is an estimate; another estimate is the 
standard deviation of the set of measurements which in this 
case is 0.004 m. 0.006 m is thus an overestimate.)

 ii)  The fractional uncertainty is = =
0.006

0.9782
0.006(13) 0.006. 

This is a ratio of lengths and has no unit.

 iii) The percentage uncertainty is 0.006 × 100 = 0.6%.

Combining uncertainties

The two sides of a table have lengths (180 ± 5) cm and  
(60 ± 3) cm. What is the total perimeter of the table?

The absolute uncertainties are added when quantities are 
added and subtracted.

When y a b= ±  then ∆ = ∆ + ∆y a b
In this case, the perimeter of the table is  
180 + 180 + 60 + 60 = 480 m. The absolute uncertainty is  
5 + 5 + 3 + 3 = 16 cm.  
The perimeter is (480 ± 16) cm or 4.8 ± 0.2 m.

Notice that when the quantities themselves are subtracted, 
the uncertainties are still added.

What is the area of the table?

When y
ab
c

=  then 
∆

= ∆ + ∆ + ∆y
y

a
a

b
b

c
c

The fractional uncertainties are added when quantities are 
multiplied or divided.

The area is 1.8 × 0.60 = 1.08 m2. The two fractional 
uncertainties are

= =0.05
1.8

0.028 and
0.03
0.6

0.050.  

The sum is 0.078 and this is the fractional uncertainty of 
the answer.

The absolute uncertainty in the  
area = × =0.078 1.08 0.084.

The answer should be expressed as (1.08 ± 0.08) m2.

When the answer is found by division, the fractional 
uncertainties are still added.

Raising quantities to a power

When 2=y a , this is the same as a × a so using the 

algebraic rule above: 
∆

= ∆ + ∆ = ∆y
y

a
a

a
a

a
a

2
. 

In the general case, when y an= , 
∆

= ∆y
y

n
a

a
, where || 

means the absolute value or magnitude of the expression.

When a quantity is raised to a power n, the fractional 
uncertainty is multiplied by n. 

The radius of a sphere is (0.20 ± 0.01) m. What is the 
volume of the sphere?

Volume of sphere is: 4
3

=0.03353rπ  m3  

where r is the radius.

Fractional uncertainty of radius = =0.01
0.20

0.05

So, the fractional uncertainty of the radius cubed is  
3 × 0.05 = 0.15.

The absolute uncertainty is  
0.335 × 0.15 = 0.0050 m3.

The volume of the sphere is (0.335 ± 0.005) m3.

It is possible that data points, all with an associated error, are presented 
on a graph. Therefore, there are errors associated with the gradient and 
any intercept on the graph. The way to treat these errors is to add error 
bars to the graph. These are vertical or horizontal lines, centred on each 
data point, that are equal to the length of the absolute errors. 

There is more information about 
this topic in Chapter 13, which deals 
with Paper 3, Section A.

You will often need to combine quantities mathematically: a pair of 
lengths, both with uncertainty, may need to be added to give a total 
length. This derived quantity will also have an uncertainty. 
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Maximum and minimum best-fit lines can then be drawn each side of 
the true best-fit line. The gradients of these maximum–minimum lines 
give a range of values that corresponds to the error in the gradient. The 
intercepts of the maximum–minimum lines also have a range in values 
that can be associated with the error in the true intercept.

For the graph in Figure 1.2.1, the gradient is 1.6 with a range between 
2.1 and 1.1, so (1.6 ± 0.5) m s−1.

The intercept is −2.4 with a range of 1.0 to −5.8, so (−2.4 ± 3.4) m.

You must know:
 ✔ what are meant by vector and scalar quantities

 ✔ that vectors can be combined and resolved  
(split into two separate vectors).

You should be able to:
 ✔ solve vector problems graphically and 

algebraically.

1 . 3   V E C T O R S  A N D  S C A L A R S

Quantities in DP physics are either scalars or vectors. (There is a third 
type of physical quantity but this is not used at this level.)

A vector can be represented by a line with an arrow. When drawn to 
scale, the length of the line represents the magnitude, and the direction 
is as drawn.

Both scalars and vectors can be added and subtracted. Scalar quantities 
add just as any other number in mathematics. With vectors, however, 
you need to take the direction into account.

Figure 1.3.1 shows the addition of two vectors. The vectors must be 
drawn to the same scale and the direction angles drawn accurately too. 
A further construction produces the parallelogram with the red solid 
and dashed lines. Then the magnitude of the new vector v1 + v2 is given 
by the length of the blue vector with the direction as shown.

Scalars are quantities that have 
magnitude (size) but no direction. 
They generally have a unit 
associated with them.

Vectors are quantities that have 
both magnitude and a physical 
direction. A unit is associated with 
the number part of the vector.

For example, the scalar quantity 
speed is written as v; the vector 
quantity velocity is written as v 
(sometimes as v v





 or , but this 
notation is not used in this book).

 Figure 1.2.1. Maximum and 
minimum best-fit lines each side of a 
true best-fit line
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 Figure 1.3.1. Adding vectors v1 and v2

v
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Vectors can also be added algebraically. The most common situation 
you meet in the DP physics course is when the vectors are at 90° to 
each other (Figure 1.3.2).

As before, addition by drawing gives the red vector which is the sum of 

v1 and v2. Algebraically, the use of trigonometry gives the magnitude of 

the resultant (added) vector as +v v1
2

2
2  and the direction θ as 

v
v

tan 1 2

1







− .
 Figure 1.3.2. Adding two vectors at 

right angles

v2

v2

v1

v1

θ

v2

v2

v1

v1

θ
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Example 1.3.1

A girl walks 500 m due north and then 1200 m due east. Calculate 
her position relative to her starting point.

Solution
This is similar to the situation in Figure 1.3.2 where the first vector 
has a magnitude of 500 m and the second a magnitude of 1200 m. 

The magnitude of the resultant is + =500 1200 13002 2  m.

θ is 



 = °−tan

500
1200

22.61 .

Another skill required in the DP physics course is that of breaking a 
vector down into two components at right angles to each other – this is 
known as resolving the vector. A right angle is chosen because the two 
resolved components will be independent of each other. Figure 1.3.3 
shows the process.

The vector F points upwards from the horizontal at θ. This length F 
is the hypotenuse of the right-angled triangle. The other sides have 
lengths θF cos and θF sin .

 Figure 1.3.3. Resolving a vector

F

θ

θ

Fcos

θFsin

Example 1.3.2

An object moves with a velocity 40 m s−1 at an  
angle N30°E. Determine the component of the 
velocity in the direction:

a) due east

b) due north.

Solution
a) The angle between the vector and east is 60°

 So the component due east = ° = −40cos60 20ms 1

b) Due north, the component is ° = ° = −40cos30 40sin60 34.6ms 1

Example 1.3.3

A girl cycles 1500 m due north, 800 m due east and 1000 m in a 
south-easterly direction. Calculate her overall displacement.

Solution

A drawing of the journey is shown. The total horizontal component 
of the displacement is + ° =800 1000cos 45 1510m. The total vertical 
component is − ° =1500 1000cos 45 790m.

The displacement is 1700 m at 



 = °−tan

790
1510

281 .

Vx = 40 cos 60°

40 ms−1

V
y =

 4
0 

si
n 

60
°

60°
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Horizontally the addition gives = +V V Vx x x1 2 which is θ θ−V Vcos cos1 1 2 2.

Vertically the addition gives = +V V Vy y y1 2 which is θ θ+V Vsin sin1 1 2 2. These new vector lengths can be 

added to give the new vector length = +V V Vx y
2 2 with an angle to the horizontal of =







− V

V
tan y

x

1 .

To subtract two vectors, simply form the negative vector of the one being subtracted (by reversing its 
original direction but leaving the length unchanged) and add this to the other vector.

You can now add or subtract any non-parallel vectors algebraically. Figure 1.3.4 shows the method.

Practice problems for Topic 1
Problem 1
You will need to have covered the relevant topic before 
answering this question.

a) Express the following derived units in fundamental 
units: watt, newton, pascal, tesla.

b) Give a suitable set of fundamental units for the 
following quantities: 
acceleration, gravitational field strength, electric field 
strength, energy.

Problem 2
Express the following physical constants (all in the  
data booklet) to the specific number of significant  
figures.

Quantity Significant figures required

Neutron rest mass 3

Planck’s constant 2

Coulomb constant 2

Permeability of free space 5

Problem 3
Express the following numbers in scientific notation to 
three significant figures.

a) 4903.5 b) 0.005194

c) 39.782 d) 9273844.45

e) 0.035163

Problem 4
Estimate these quantities.

a) Length of a DP physics course in seconds. 

b) Number of free electrons in the charger lead to your 
computer.

c) Volume of a door.

d) Number of atoms in a chicken’s egg (assume it is 
made of water).

e) Number of molecules of ink in a pen.

f) Energy stored in an AA cell.

g) Number of seconds you have been alive.

h) Thickness of tread worn off a car tyre when it  
travels 10 km.

Problem 5
Determine, the following, with their absolute and 
percentage uncertainties.

a) The kinetic energy of a mass (1.5 ± 0.2) kg moving at 

(21.5 ± 0.3) m s−1 (use Ek = 
1
2

mv2).

b) The force acting on a wire of length (3.5 ± 0.4) m 
carrying a current (2.5 ± 0.2) A in a magnetic field of 
strength (5.2 ± 0.3) mT (use F = BIL).

c) The quantity of gas, in mol, in a gas of volume  
(1.25 ± 0.03) m3, pressure (2.3 ± 0.1) × 105 Pa at a 
temperature of (300 ± 10) K (use pV = nRT).

Problem 6
A car is driven at 30 m s−1 for 30 minutes due east and 
then at 25 m s−1 for 45 minutes northeast.

Calculate the final displacement of the car from its 
starting point.

V1x = V1 cos    1θ

V1

V
1y

 =
 V

1 
si

n 
   1θ

1θ2

2

θ

V2x = V2 cos   θ

V2

V
2y

 =
 V

2 
si

n 
  2θ

 Figure 1.3.4. Algebraic method for adding or subtracting non-parallel vectors
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SAMPLE STUDENT ANSWER

Example 10.1.1

A precipitation system collects dust particles in a chimney. It 
consists of two large parallel vertical plates, separated by 4.0 m, 
maintained at potentials of +25 kV and −25 kV.

a) Explain what is meant by an equipotential surface.

b)  A small dust particle moves vertically up the centre of the 
chimney, midway between the plates.The charge on the dust 
particle is + 5.5 nC.

 i)  Show that there is an electrostatic force on the particle of about 
0.07 mN.

 ii)  The mass of the dust particle is 1.2 × 10−4 kg and it moves 
up the centre of the chimney at a constant vertical speed of 
0.80 m s−1.

   Calculate the minimum length of the plates so that the particle 
strikes one of them. Air resistance is negligible.

Solution
a)  An equipotential surface is a surface of constant potential. This 

means that no work is done in moving charge around on the 
surface.

b) i)  The force on particle = =qE
Vq
d

 where d is the distance between 

the plates. The potential difference is 50 kV.

  So force = 
× × ×

= ×
−

−5.0 10 5.5 10
4.0

6.875 10 N
4 9

5  

 ii)  The horizontal acceleration = =
×

×
=

−

−
−force

mass
6.875 10
1.2 10

0.573 m s
5

4
2 .

   The particle is in the centre of the plates, so has to move 2.0 m 

horizontally to reach a plate. Using = +s ut at
1
2

2  and knowing 

that the particle has no initial horizontal component of 

speed gives = × +
×

t t t2.0 0
1
2

0.573 so =
2 2.0
0.573

2  = 2.63 m and, 

therefore, the length must be 2.63 × 0.8 = 2.1 m.

Explain what is meant by the gravitational potential at the surface of a 
planet. [2] 
This answer could have achieved 2/2 marks:

It is the work done per unit mass to bring a small test mass 

from a point of infinity (zero PE) to the surface of that planet 

(in the gravitational field).

▲▲ There are two marks for this 
question and two points to make – 
this answer has them both: work 
done per unit mass, and the idea of 
taking the mass (it does not have to 
be ‘small’ in a potential definition) 
from infinity to the surface.

 Figure 10.1.3. Field lines and 
equipotentials around a planet

–80 V

–90 V

–100 V

Figure 10.1.3 shows the gravitational field due to a spherical planet 
Points on the green surface are at the same distance from the centre 
of the sphere and so have the same potential. When a mass moves on 
the green surface no overall work is done. This gives an equipotential 
surface, on which a charge or mass can move without work being 
transferred. 

Because work is done when a charge or mass moves along a field line, 
equipotentials must always meet field lines at 90°.

        Assessment tip

Example 10.1.1 b) i) is a ‘show 
that’ question. You must convince 
the examiner that you have 
completed all the steps to carry 
out the calculation. The way to do 
this is to quote the final answer to 
at least one more significant figure 
(sf) than the question quoted. 
Here it is quoted to 4 sf – and in 
this situation this is fine.
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Assessment questions and sample student 
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and useful feedback
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