Mathematics

Contents

(1) In how many different ways can we express the same thing?
(2) Why does algebra look so clever?
(3) Can you walk the line?

4 How is technical innovation changing our ideas of public and private space?
(5) How can we move in space?
(6) How well does data reflect reality?
(7) How can we make the world a fairer and more equal place?
(8) How many forms has a quadratic?

9 How do functions function?
10 Circles in Space - 'What do I get by learning these things?'
(11) How can we be sure?
(12) Am I ready?

A bright and engaging page design, unlike any other textbook.

Each chapter is framed with a Key concept and a Related concept, and is set in a Global context.

The Statement of Inquiry provides the framework for the inquiry, and the inquiry questions then lead the exploration as they are developed through each chapter.

How is technical innovation changing our ideas of public and private space?

Modelling allows us to solve new spatial relationship problems arising from technical innovation.

CONSIDER THESE QUESTIONS:

Factual: How can we calculate unknown angles and sides? How do trigonometric relationships work?

Conceptual: Where do geometric shapes occur around us? How do their relationships give us insight into the unknown? How do I find a missing angle or side? What can we measure? What can't we measure? Can we calculate what we can't measure?

Debatable: Can anyone 'own' an angle? How much should models affect our understanding of the real world?

Now share and compare your thoughts and ideas with your partner, or with the whole class.

- Drone photography

○ IN THIS CHAPTER WE WILL ...

■ Find out about drones and what they have to do with trigonometry.
■ Explore Pythagoras' theorem, geometric shapes and trigonometric relationships.

- Take action by debating about the viewing angles and heights arising from drone use.

Geometry and trigonometry

Each chapter covers one of the four

These Approaches to Learning (ATL) skills will be useful
branches of mathematics identified in the MYP Mathematics skills
Critical-thinking skills

- Collaboration skills
- Creative-thinking skills
- Transfer skills
- Communication skills

We will reflect on this learner profile attribute

- Principled - we act with integrity and honesty, with a strong sense of fairness and justice, and with respect for the dignity and rights of people everywhere. We take responsibility for our actions and their consequences.

```
Assessment opportunities in this chapter:
- Criterion A: Knowing and understanding
- Criterion B: Investigating patterns
- Criterion C: Communicating
- Criterion D: Applying Mathematics in real-life contexts
```


PRIOR KNOWILEDGE

You will already know:

- that angles in a triangle sum to 180°
- that Pythagoras' theorem states that the square of the hypotenuse equals the sum of the squares of the other two sides
- how to use Pythagoras' theorem to find missing/ unknown sides of right-angled triangles
- how similar triangles relate to one another
- what a Pythagorean triple is, such as $3,4,5$ or $5,12,13$.

KEY WORDS

adjacent	inverse
depression	opposite
elevation	ratio

THINK-PUZZLE-EXPLORE

- What do you think you know about this topic?
- What questions do you have?
- How can you explore this topic?

WHAT IS A DRONE?

Drones, or UAVs (unmanned aerial vehicles) are aircrafts without a human pilot on-board. These aerial vehicles are often expensive but come in a variety of sizes and are becoming more commonly used and owned by individuals.

Drones can be mounted with cameras or other devices and are often used by individuals, governments and organizations for a variety of uses and applications. They are traditionally used by the military for dangerous missions, but have become increasingly used for policing, surveillance, scientific investigation and aerial filming.

You might have seen popular videos, items in the news or viral stories as drones become more and more commonplace. The area swept out, covered by or visible to, a drone depends on its height from the earth and the viewing angle of the camera.
https://youtu.be/mxWd50uoiRQ

DISCUSS

ATL
Critical-thinking skills: Evaluate evidence and
arguments

Now that drones can survey and record areas that previously were hard to see, what does this mean for our privacy? For our safety? For our creativity? For our discovery?

Assessment opportunities are identified.

How can we calculate unknown angles and sides?

Geometric shapes are all around us. Throughout time, the relationships shown by these shapes have been used and applied to calculate quantities such as the area of a field, the distance between stars and to navigate the seas. Rules and relationships have been discovered to allow people to calculate what they can't measure.

Triangles in particular have been used throughout the ages as their relationships can help us to model distances and angles to find unknowns. As humankind has moved from the surface of the earth into the skies and the heavens, scientific innovation has brought new opportunities and challenges.

WHO AND WHAT IS PYTHAGORAS?

Pythagoras was an ancient Greek philosopher and mathematician who is estimated to have lived between 570 and approximately 495 BCE. The exact details of Pythagoras' life and works have been lost in the mists of time but he is mostly commonly remembered for Pythagoras' theorem, which is perhaps one of the oldest and most elegant relationships in geometry.

What is Pythagoras' theorem?

Remember that:
A right-angled triangle contains a right angle. The longest side opposite the right angle is called the hypotenuse.

We have looked at Pythagoras in Chapter 5 of Mathematics for the IB MYP 3: by Concept. Before we look inside a right-angled triangle to find relationships, we must revise the relationship governing the sides. You will have already learned that the square of the hypotenuse is equal to the sum of the square of the other two sides, or:

$$
a^{2}=b^{2}+c^{2} \text { or } a^{2}+b^{2}=c^{2} \text { or hyp }=a^{2}+b^{2}
$$

For the purposes of consistency, we will use the version of $a^{2}+b^{2}=c^{2}$ where a, b are the shorter sides and c is the hypotenuse. It is important to remember that all forms are valid and all will be accepted in assessment and examinations, if the communication is clear, consistent and correct.

[^0]
Example

Problem 1

Calculate the value of x.
Give your answer correct to 1 d.p.

Triangle A

Solution

First you should state the theorem:
$c^{2}=a^{2}+b^{2}$

Substitute values:

$x^{2}=5^{2}+7^{2}$
$x^{2}=25+49$
$x^{2}=74$
To find x, inverse or undo the square:
$x=\sqrt{74}$
$x=8.602325267$ from the calculator
$x=8.6$
to 1 decimal place

Problem 2

Calculate the length of side y.

Triangle B

Solution

Triangle B with sides labelled
Pythagoras: $c^{2}=a^{2}+b^{2}$
BUT we are looking for a shorter side
so
so

$$
\begin{aligned}
& 11^{2}=4^{2}+y^{2} \\
& y^{2}=11^{2}-4^{2} \\
& y^{2}=121-16 \\
& y^{2}=105 \\
& y=\sqrt{105} \\
& y=10.24695 \ldots \\
& y \approx 10.2
\end{aligned}
$$

Example

The picture above shows a ski lift with a large and a small pole exactly 370 metres away from each other, as the crow flies (see below). If the top of the small pole is 250 metres directly below the top of the large pole, how long it the ski lift?

∇ Links to: English; Language and literature; Geography

As the crow flies, is an idiom for the shortest distance between two points. Find more idioms used to describe distance.

Solution

Worded problems can be made easier by taking out all the unnecessary visual information and finding the triangle.

From the diagram above we can see that

$$
c^{2}=a^{2}+b^{2}
$$

Or $(\text { ski lift })^{2}=(\text { height difference })^{2}+(\text { distance })^{2}$

$$
\begin{aligned}
(\text { ski lift })^{2} & =250^{2}+370^{2} \\
(\text { ski lift })^{2} & =62500+136900 \\
& =199400 \\
\therefore \text { ski lift } & =\sqrt{199400} \\
& =446.5422712 \mathrm{~m}
\end{aligned}
$$

As no level of accuracy was mentioned in the question, an appropriate answer would be either 447 m (3 s.f.) or 450 m (same s.f. as the question values).

Example

How far is the United Artist Studios from 288 Santa Monica Boulevard if it is the same distance from the Gardner School?

- Pacific Electric railway line map

Solution

The Gardner School, the Studios and 288 Santa Monica Boulevard form a right-angled triangle.

We know the two shorter sides are identical as the question tells us they are equidistant. This means that we can name each of the sides by the same letter, a.

So instead of a and b, Pythagoras' theorem will now look like

```
a}+\mp@subsup{a}{}{2}=\mp@subsup{c}{}{2
a}+\mp@subsup{a}{}{2}=(848.53)
a}+\mp@subsup{a}{}{2}=720003.1
    2a}=720003.16 by collecting like term
    a}=360001.58 by halvin
    a=\sqrt{}{360001.58}}\mathrm{ by square rooting
    a=600.00m
```

as the Pacific Electric railway is the hypotenuse value

```
\(a^{2}+a^{2}=720003.16\)
\(2 a^{2}=720003.16 \quad\) by collecting like terms
\(a^{2}=360001.58 \quad\) by halving
\(a=\sqrt{360001.58}\) by square rooting
\(a=600.00 \mathrm{~m}\)
```


ACTIVITY: What has a drone got to do with right-angles?

ATL
Critical-thinking skills: Gather and organize relevant information to formulate an argument

If we consider drones surveying the land from above, where could we see right-angled triangles occurring? How could Pythagoras' theorem help us to calculate important unknowns?

A drone surveying the land from above

Hint

Think of the area covered by a drone's camera.
If we change direction and think about the drones being used to survey upright objects, such as buildings, homes or geographical features, can we find right-angled triangles in these situations also? Consider how this makes you feel.

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion D: Applying mathematics in real-life contexts.

How do trigonometric relationships work?

WHAT ARE THE TRIGONOMETRIC RATIOS?

Trigonometry, which comes from the Greek meaning 'triangle measurement' uses the property of similarity to find unknown sides or angles. The fact that side lengths of similar triangles are always in the same ratio has allowed mathematicians to name these ratios and devise uses for them.

These three ratios: sine, cosine and tangent each pair two of the three sides of a right-angles triangle, relative to an angle. The ratios are commonly abbreviated or shortened to sin, cos and tan. See if you can find them on your calculator.

The other two sides of a right-angled triangle are labelled as either opposite or adjacent (touching) depending on/relative to the angle in question.

Links to: Design

Ask your Design teacher about 'innovating the adjacent possible'. What does it mean? How does it relate to the mathematical meaning of adjacent?

Links to: Language and literature; History

Research where the terms sine, cosine and tangent come from. Investigate the history of trigonometry.
©

- Labelled triangle A

For a right-angled triangle, the sine, cosine and tangent of an angle θ are defined as

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Of course, if the angle moves to a different location, the opposite and adjacent will also move, relative to the angle. The hypotenuse will always be the longest side, opposite to the right angle.

- Labelled triangle B

These ratios will always have the same value for any particular angle, no matter what the size of the triangle. This is due to the nature of similar triangles.

Until relatively recently, many countries did not allow calculators in examinations and students were required to look up the trigonometric ratios in a book of tables (log book).

As the use of technology to support our mathematics is encouraged in IB, how do we use a scientific calculator or graphical display calculator to find a sin, cos or tan?

Using a scientific or graphical display calculator

All scientific calculators and apps will have buttons for sin, cos and tan.

sin, cos and tan buttons
With some calculators, you press the button first and input the value of the angle second. For others, type the angle value first, then press the sin, cos or tan button.

Test yours now with $\sin 30^{\circ}$ to see which order your calculator prefers. Whichever order gives an answer of 0.5 is the correct one.

Hint

Remember to check mode! if your calculator is not in degree mode (but in radían mode), then your answers will be incorrect for these questions.

ACTIVITY: How can angles be manipulated?

- ATL

- Collaboration skills: Listen actively to other perspectives and ideas
- Critical-thinking skills: Gather and organize relevant information to formulate an argument

Two of your friends Robin and Sumaya live next door to one another. Robin has recently purchased a small camera drone and is excited to be using it in his garden. The drone can fly reasonably high and see over fences and trees. He does not fly it beyond the limits of his own garden. He feels that he has a right to fly anywhere in his own garden and that any angles extended by the drone in that space belong to him.

Sumaya lives next door to Robin and is worried about the drone's angles of view. She trusts him not to spy but she also feels that she should have the right to decide where Robin can fly if there is a chance he will invade the privacy of her family. The two cannot agree and have asked you to mediate.
In pairs, or small groups, consider these questions:

- Can you 'own' an angle?

EXTENSION

As trigonometric ratios are defined as the ratio of two lengths, what is their unit? Why? Prove this by showing an example or citing a source.

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion D: Applying Mathematics in real-life contexts.

Can we calculate what we can't measure?

Example 1 Find missing side y

Step 1: Label sides
 identify the hypotenuse, the side opposite the angle and the touching (adjacent) side

Step 2: Write the ratios

$S_{H}^{\circ} C_{H}^{A} T_{A}^{\circ}$

Step 3: Identify which sides are given/needed

The hypotenuse is given (20)
We are looking for y (adj)

This is the only one to contain A and H
Step 4: Write formula

$$
\cos \theta=\frac{\mathrm{Adj}}{\mathrm{Hyp}}
$$

Step 5: Substitute values

$$
\cos 45=\frac{y}{20}
$$

Step 6: Re-arrange and solve

$$
\begin{aligned}
& \cos 45=\frac{y}{20} \\
& \text { so } \quad \begin{aligned}
y & =20 \cos 45 \quad \text { multiply } \times 20 \\
y & =14.14
\end{aligned}
\end{aligned}
$$

Example 2

Find the hypotenuse for a right-angled triangle where an observer has an angle of elevation of 27° on a flagpole 10 metres high.

$$
\begin{aligned}
\sin & =\frac{O}{H} \\
\sin 27^{\circ} & =\frac{10}{H}
\end{aligned}
$$

$\mathrm{S}_{\mathrm{H}}^{\circ} \mathrm{C}_{\mathrm{H}} \mathrm{T}_{\mathrm{A}}^{\circ}$ cross multiply
$H \sin 27=10$

$$
\begin{aligned}
& H=\frac{10}{\sin 27} \\
& H=22 m
\end{aligned}
$$

Using trigonometric ratios

S욱 CAT

- A tool for remembering the order of ratios

This is a tool which can be used to help you remember the order of the ratios and how to find them. By laying them out in this way, you can easily choose between the three and it reminds you how to find the quotient, i.e. which side is the numerator and which is the denominator.

Example 3: worded problem

If a wheelchair ramp has an angle of elevation of 4° and a length of 3 m , how high must it be?

First construct the triangle using the information provided in the question:

Now label sides

We have A and want O

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{Opp}}{\mathrm{Adj}} \\
\tan 4 & =\frac{\mathrm{O}}{3} \\
& =3 \times \tan 4^{\circ} \\
& =0.20978
\end{aligned}
$$

The opposite side, or height, is 0.21 m high

Find z.

In the diagram below, find all the missing angles and sides using trigonometric ratios and Pythagoras' theorem.

Hint

Don't convert trigonometric ratios until the last step to avoid errors in rounding.

A tourist in Amsterdam wishes to take a photo of a typical canal house using their drone camera. The camera has an angle of depression of 66°.

How far back from the 10 m high building should the drone be to photograph the whole building as clearly as possible?

How do I find a missing angle or side?

HOW CAN I USE 'SOHCAHTOA' TO FIND ANGLES?

In algebra, you have learned rules for rearranging, transposing or 'manipulating' formulas to find what you are looking for. For example, you may wish to inverse a 'squared' in a Pythagoras problem by square rooting the other side. Trigonometric ratios also have an inverse function each. This allows us to 'undo' and isolate the angle to solve.
$\sin \rightarrow \sin ^{-1} \quad \cos \rightarrow \cos ^{-1} \quad \tan \rightarrow \tan ^{-1}$
©
To work this out use the $\sin ^{-1}$ on the calculator.

$$
\sin ^{-1} 0.5=30^{\circ}
$$

$\sin ^{-1}$ is the inverse of \sin. It is sometimes called arcsin.

If I know the value of a sin in a given triangle, such as $\sin x=0.5$, I need to isolate or solve for x to find the angle. Removing the sin, or moving
it to the right-hand side, means I must use the inverse $\sin ^{-1}$

$$
\sin ^{-1} 0.5=30^{\circ}
$$

Likewise,

PRACTICE EXERCISES

1 Find the angles, correct to 1 d.p.
a $\sin ^{-1} 0.35$
b $\cos ^{-1} 0.8760$
c $\tan ^{-1} 1.2$
2 Find the angles, correct to the nearest degree
a $\sin ^{-1} 0.5$
b $\cos ^{-1} 0.176$
c $\tan ^{-1} \frac{4}{5}$

Hint
 using a calculator or graphic dísplay calculator
 Most apps or calculators have inverse buttons. You may need to use the shift button to access the $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ functions.
 Ensure that your calculator is in degrees' mode and not radians, this is very important. You will learn more about radians later.
 Remember that $\sin ^{-1}$ is not a power, it is an inverse operation notation.

HOW DO WE USE THIS INVERSE IN SOLVING PROBLEMS?

As before, identify the sides.

So we will use
$S_{H}^{\theta} G_{H}^{A}\left(T_{A}^{0}\right)$

$$
\begin{gathered}
\tan =\frac{O}{A} \\
\tan \theta=\frac{300}{400} \\
\tan \theta=0.75
\end{gathered}
$$

But we're looking for θ

$$
\begin{aligned}
& \tan \theta=0.75 \\
& \tan ^{-1} \\
& \theta=\tan ^{-1} 0.75 \\
& \theta=37^{\circ}
\end{aligned}
$$

Example 2

Label sides and choose $S_{H}^{\circ} C_{H}^{A} T_{A}^{\circ}$

From calculator \rightarrow
$\theta=55.4^{\circ}$

Find α

Label sides and choose $S_{H}^{\circ} C_{H}^{A} T_{A}^{\circ}$

Unusually, we have all three sides, so we can choose any of the ratios.

$$
\begin{aligned}
\sin & =\frac{O}{H} \\
\sin \alpha & =\frac{12}{13} \\
\sin \alpha & =0.923 \\
\alpha & =\sin ^{-1} 0.923 \\
\alpha & =67.38013505 \ldots \\
\therefore \alpha & \approx 67^{\circ}
\end{aligned}
$$

A hot air balloon is flying at a height of 800 metres. If Sean is looking at the balloon 350 metres away from the balloon, what is the angle of elevation through which Sean is looking?

Solution

First identify the relevant information from the question and construct a triangle to label.

$\tan =\frac{O}{A}$
$\tan \theta=\frac{800}{350}$
$\theta=\tan ^{-1}\left(\frac{800}{350}\right)$
$\theta \approx 66.4^{\circ}$
Therefore, Sean must be looking up at an angle of elevation of approximately 66°.

EXTENDED

If Lola is in the hot air balloon and looks down to see Sean, through which angle of depression must she be looking?
(i)

The angle of depression is the angle looking down from the balloon. By using the fact that the angles in a triangle add to 180° and the fact that we know the other angles are 67° and 90°, that means

$$
\text { angle of depression }=180^{\circ}-67^{\circ}-90^{\circ}
$$

Lola is looking down through (or has an angle of depression of) an angle of 23°.

ACTIVITY: Sundials

- Sundial

A sundial is a device used since ancient times to estimate the time of day using the shadows cast by the sun.
Research how a sundial works.
Explain, using diagrams, how the angle of the sun affects the length of the shadows.

Now, using this information, collaborate with a partner to create your own unique sundial. Take a series of measurements at certain times. Use the information to find the angle of the sun at various times of the day.

- Sundial otel, Fethiye, Turkey

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion C: Communicating, and Criterion D: Applying mathematics in real-life contexts. You might even choose to expand this activity to a Personal Project topic.

Where do geometric shapes occur around us?

Real-life problems: How do I find the hidden triangles?

It is very helpful to imagine the triangle 'hidden' in the diagram. First look for the lengths or measurements you have been given and mark them on the image. Remember to mark the right angle, both to show your communication and to selfcheck that you have correctly identified the relevant elements of the problem.

What if you have only words and no diagram? Don't let this worry you. Identify the dimensions/lengths in the question. Sketch a triangle and mark the right angle. Match the lengths (or angles) on the triangle. Reread the question to make sure you have correctly identified the information included. Solve as normal.

A tower has lost contact with a GPS satellite. The satellite is at 4500 metres over the Earth at a location 2000 metres from the tower.

At what angle should the tower point and scan to make contact again? Note the height of the tower is not included

Solution

$\tan =\frac{\mathrm{O}}{\mathrm{A}}$
$\tan \theta=\frac{4500}{2000}$
$\theta=\tan ^{-1}\left(\frac{4500}{2000}\right)$
$\theta=66^{\circ}$

Example

Find the height of the tree.

Solution

$\tan =\frac{\mathrm{O}}{\mathrm{A}}$
$\tan \theta=\frac{\text { opp }}{25}$
$\mathrm{opp}=25 \times \tan 31$
opp $=15 \mathrm{~m}$
The tree is 15 metres tall.

Worded problem: For a tent which is 2 m high and 6 m wide, what angle does the side of the tent make with the ground?

Solution

Find a.
Isolate triangle

$$
\begin{aligned}
& \tan =\frac{O}{A} \\
& \tan a=\frac{2}{3} \\
& a=\tan ^{-1} \frac{2}{3} \\
& a=33.7^{\circ} \text { to } 3 \text { s.f. }
\end{aligned}
$$

ACTIVITY: Can you get a tan in class?

- What does this actually mean?

Using what you know about trigonometric
relationships and substitution, show why $\frac{\sin }{\cos }$ will result in a tan?

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion C: Communicating.

ACTIVITY: Will the relationships work in 3D models?

ATL

Transfer skills: Apply skills and knowledge in unfamiliar situations; Inquire in different contexts to gain a different perspective

Imagine you are trying to find a diagonal in a box. Or you are trying to find the longest length in a room for a laser beam security system. Or are base jumping off a building and want to make sure you know where you will land. Or are trying to calculate if your skis will go into a box that is definitely too short but might work on the diagonal.

Will Pythagoras help you in three dimensions?

With a partner, construct a 3D model of a cuboid (or a 2D drawing to represent 3D space). Determine whether you could use Pythagoras' theorem to find the longest length (diagonal) inside the box if you know the dimensions of the box (cuboid).

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion D: Applying mathematics in real-life contexts.

ACTIVITY: Trigonometry pile up!

EXTENDED

Verify whether this calculation is correct for the diagram above!

ATL

Self-management shills: Demonstrating resillience.

WHAT IS THE SINE RULE?

Now that you have mastered the lengths and sides of rightangled triangles of any size, we must begin to consider other non-right-angled triangles.

The sine rule

The first relationship which you can use to find unknowns is called the sine rule.

For any triangle $A B C$,

If you are given any two angles and one side of a triangle, you can use the sine rule to find the other sides. You can also use algebraic manipulation to find unknown sides. 2A +S or $2 \mathrm{~S}+1 \mathrm{~A}$ problems. Often you will see these referred to as AAS (angle, angle, side) or SSA (side, side, angle) questions.

How much information do you need to solve a question using the sine rule?

Find P.

Solution

Write sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Identify sides and label.

Substitute

$$
\frac{8}{\sin 140}=\frac{P}{\sin 22}=\frac{c}{\sin 18}
$$

We don't need all three versions to solve.
So take the first equation

$$
\frac{8}{\sin 140} \neq \frac{P}{\sin 22}
$$

We want to isolate P so first cross-multiply

$$
\begin{aligned}
P \sin 140 & =8 \sin 22 \\
P & =\frac{8 \sin 22}{\sin 140} \quad \rightarrow \text { now plug into calculator } \\
P & =4.66
\end{aligned}
$$

As you can see, we only need to identify the pairs of angles and sides we will use and solve from that single equation. Once you identify the correct pairs, all that is left to solve for the missing side or angle is to be careful and accurate in your algebraic manipulation.

Find x.

Solution

First label sides and angles.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

We are looking for x.

$$
\begin{array}{ll}
\frac{\sin A}{a}=\frac{\sin 143}{b} & \begin{array}{l}
\text { We weren't given } B \text { but } \\
\text { we know angles in } a
\end{array} \\
\frac{\sin 21}{x}=\frac{\sin 143}{100} & \text { triangle add to } 180^{\circ}
\end{array}
$$

so $B=180-21-16$
cross-multiply
$B=143^{\circ}$
$x(\sin 143)=100(\sin 21)$

$$
\begin{aligned}
& x=\frac{100 \sin 21}{\sin 143} \\
& x=59.5
\end{aligned}
$$

Find θ.

Solution

Label sides and angles.

$\frac{\sin A}{a}=\frac{\sin B}{b}$
The order is not important as we will cross-multiply
$20 \sin \theta=13 \sin 100$ cross-multiply
$\sin \theta=\frac{13 \sin 100}{20}$
$\sin \theta=0.6401250 \ldots$

Hint
Don't forget the degree symbol when finding an angle.

Drones are continuing to be used in new and varied ways all the time. Recently a protest using a drone and a flag disrupted an international football game and the game had to be stopped until the drone was brought down.
www.bbc.com/news/world-
europe-29627615
Given the information in the diagram below, find the width of the flag being dragged by the drone.

Solution

$\frac{a}{\sin A}=\frac{b}{\sin B}$
$\frac{10}{\sin 70}=\frac{b}{\sin 15}$
b $\sin 70=10 \sin 15$
$b=\frac{10 \sin 15}{\sin 70}$
$\mathrm{b}=2.75 \mathrm{~m}$
The flag was nearly 3 m wide!

PRACTICE QUESTIONS

1 Finda.

2 Find x.

3 Find y.

Worked examples and practice questions are given in colourcoded boxes to show the level of difficulty

ACTIVITY: Would the sine rule work on a right-angled triangle as well?

ATL

Collaboration skills: Understanding mathematical notation

Investigate if it works on right-angled triangles by constructing your own.
Test to see if both the sine rule and SOHCAHTOA gives the same answer.

Assessment opportunities

- In this activity you have practised skills that are assessed using Criterion A: Knowing and understanding, and Criterion C: Communicating.

Drive meaningful inquiry using the only MYP resources for Years 4 and 5 developed with the IB

Mathematics

This sample chapter is taken from the IB endorsed Student Book, Mathematics for the IB MYP 4\&5.
Developed exclusively with the IB, the MYP By Concept $4 \& 5$ Student Book provides a unique concept-driven and assessment-focussed approach to the framework, supported by Student and Whiteboard eTextbook editions and digital Teaching and Learning Resources, available via the Dynamic Learning platform.

- Supports every aspect of assessment with opportunities that use the criteria
- Offers simple, effective ways to differentiate and extend learning
- Provides a meaningful approach by integrating the inquiry statement in a global context
- Activities are designed to develop student's ATL skills

To request Inspection copies or pre-order this title please visit www.hoddereducation.com/mypbyconcept
Rita Bateson was, until very recently, the Curriculum Manager for MYP Mathematics and Sciences at the International Baccalaureate $®$ (IB) and continues to be involved in curriculum review. She is an experienced teacher of MYP and DP Mathematics and Sciences, and is Head of Mathematics in her current school. She has taught in many international schools in Europe as well as North America. Her interests include overcoming mathematics anxiety in pupils and STEM education. She is also the co-author of MYP by Concept 1-3 Mathematics, with Irina Amlin.

Dynamic Learning

This book is fully supported by Dynamic Learning - the online subscription service that helps make teaching and learning easier. Dynamic Learning provides unique tools and content for:

- streamlining planning and sharing lessons
- independent, flexible student study

Sign up for a free trial - visit: www.hoddereducation.com/dynamiclearning

Series editor: Paul Morris
The MYP by concept Series provides a concept-driven and
assessment-focused approach to print and digital resources. Titles in the series include:

To find your local agent please visit www.hoddereducation.com/agents or email international.sales@hoddereducation.com

[^0]: Hint
 Sometimes it might be faster to write the equation as $c^{2}=$ $a^{2}+b^{2}$ if you know you are looking for the hypotenuse.

