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Dear IB Science educator, 

We’re really excited to be publishing for the new 

IB Sciences: Biology, Chemistry and Physics Guides for 

first teaching 2023, and first assessment 2025. 

We are now going into third editions of our bestselling and much-loved Science books! 

Let our trusted, experienced, and expert authors help you navigate the new syllabuses 

confidently with Hodder Education’s co-published coursebooks, endorsed by the IB.

We asked our authors what they like about the new Guides: 

Andrew Davis has taught biology for over 20 years. He is the author of several IB textbooks 

and digital teaching and learning resources for Diploma and MYP, including Biology for the 

MYP 4&5: By Concept.

  This new IB Biology syllabus has many exciting changes, with greater integration of 
concepts, content, and skills. The reorganization of content into Themes, each based 
around two linked concepts, enables students to gain a greater appreciation of 
interconnections within the subject. 

  The new syllabus offers greater flexibility for how the course is delivered. Each Theme 
follows the same path through four levels of organization: molecules, cells, organisms 
and ecosystems, giving the course a logical structure, which enables students to 
scaffold their understanding. The course can be taught by Theme, or by level of 
organization, or a combination of both.”

John Allum

Andrew Davis 

Chris Talbot

Chris Davison

Chris Talbot has taught chemistry, biology and TOK at schools in Singapore for over 

20 years. He is the author of numerous science textbooks, including Chemistry for the 

MYP 4&5: By Concept. 

  I like the division into Structure and Reactivity, especially in the context of 
Organic chemistry.

  I particularly like the emphasis on fundamental chemical concepts, principles 
and facts and their integration and linking across traditional chemistry topics.”

Chris Davison graduated with a PhD in Organic chemistry and taught at Oundle School before 

joining Wellington College where he teaches DP Chemistry and runs practical and theoretical 

based extension lessons. 

  I like that the new Guide has been designed to show the interdependence of the 
different areas of chemistry, inorganic, organic and physical. The topics fit under two 
broad titles, Structure, and Reactivity, and new linking questions highlight where 
subject matter both builds on and leads to other areas of the Guide.

  The new Guide includes fossil fuels, biofuels and fuel cells – areas which are appealing 
and relevant to students and which only appeared in the option module previously.”

John Allum taught physics to pre-university level in international schools for more than 

thirty years (as a head of department). He has now retired from teaching, but lives a 

busy life in a mountainside village in South East Asia. He has also been an IB examiner 

for many years.

 It is much more diverse than previously, providing students and teachers 
with many opportunities for variety, expanding beyond the limitations of 
just pure physics. 

  The removal of the Options and some of the more difficult content makes 
the course more manageable.”
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Our new co-published coursebooks support the new Guides by: 

   Providing guiding questions at the start of each chapter along with a list of learning 

outcomes, each of which is mapped to the relevant assessment objective.

   Integrating conceptual understanding into all units, to ensure that a conceptual thread is 

woven throughout the course, making the subject more meaningful. This helps students 

develop clear evidence of synthesis and evaluation in their responses to assessment 

questions. 

   Stimulating creativity, curiosity, and critical thinking with ‘Inquiry’, ‘Tools’, ‘Approaches to 

Learning (ATL)’ and ‘Theory of Knowledge (TOK)’ features throughout. 

   Building the skills and techniques covered in the Tools (Experimental techniques, 

Technology and Mathematics). These skills are directly linked to relevant parts of the 

syllabus so they can be explored during delivery of the course. These skills also provide the 

foundation for practical work and internal assessment. They support the application and 

development of the inquiry process in the delivery of the new course. 

   Supporting the Inquiry process with the new Inquiry feature, which focuses on aspects of 

the Inquiry cycle skills: Inquiring and designing, Collecting and processing data, Concluding 

and evaluating. 

   Integrating Theory of Knowledge into your lessons and providing opportunities for cross-

curriculum study with TOK links and Inquiries that provide real-world examples, case studies 

and questions. For Biology and Chemistry, the TOK links are written by the author of our 

bestselling TOK coursebook, John Sprague. For Physics the links are written by Paul Morris, 

our MYP by Concept series and Physics author, who has taught IB Physics for over 20 years 

and has also examined TOK.   

  Developing ATL skills with a range of engaging activities with real-world applications. 

   Creating opportunities for students to design investigations, collect data, develop 

manipulative skills, analyse results, collaborate with peers and evaluate and communicate 

their findings.

   Providing Top tips and Common mistakes to help ensure students’ understanding is 

accurate and they are able to apply this effectively in their studies.

   Improving performance with short and simple knowledge-checking questions, a mixture 

of questions from past exam sessions and author-written exam-style questions and hints to 

help avoid common mistakes.

   Developing International mindedness by exploring how the exchange of information 

and ideas across national boundaries has been essential to the progress of science and 

illustrates the international aspects of science.

   Providing Nature of science boxes that encourage thinking, exploring ethical debates and 

learning how scientists work in the 21st century.

   Guiding students with the IB Learner Profile icon to help them develop as Thinkers, 

Risk-takers and Communicators. 

   Creating opportunities for conceptual discussions and comparisons with linking questions
at the end of each chapter.
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  Much like how the IB Diploma is a real “programme” in the sense 
that all of its moving parts mesh together, Hodder Education is 
working to incorporate a genuine collaborative and unified vision 
among its author team. We’ve brought together writers from 
the science specialists and DP Core to provide opportunities for 
students to experience the integrative approach to knowledge that 
the IBDP captures. We believe that every new publication provides 
us an opportunity to show our readers how the construction and 
transfer of knowledge is a collaborative adventure.”

   I’m proudest of the figures and diagrams which I conceived to help students to better understand complex 
ideas. As a reader said after the first edition of Biology for the IB Diploma, “what rockets this book above 
others are the brilliant illustrations in the text. They are detailed, well-annotated and ultimately support 
independent learning.”

  I gave careful thought to my choice of language and phrasing so as to be clear and precise as a means of 
helping students in their understanding of the subject.”

John Sprague is the author 

of our bestselling Theory of 

Knowledge coursebook.

Chris Clegg is an experienced teacher and examiner of Biology 

and has written many internationally-respected textbooks 

for pre-university courses. He was encouraged to write by 

his colleague and mentor at his school, textbook writer and 

teacher D.G. Mackean in the 1970s, and became his co-author 

on numerous books. He eventually took over the biology 

coursebook mantle from Don in the 1980s. 

hoddereducation.com/ib-dp-science

We asked two of our expert authors what they are most proud of 

and what they enjoyed writing. 

C. J. Clegg

John Sprague 

To learn more about our IB DP Science series visit hoddereducation.com/ib-dp-science

Yours Faithfully,

Hodder Education International Team
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Introduction
Welcome to Physics for the IB Diploma Third Edition, updated and designed to meet the criteria 
of the new International Baccalaureate (IB) Diploma Programme Physics Guide. This coursebook 
provides complete coverage of the new IB Physics Diploma syllabus, with first teaching from 
2023. Differentiated content for SL and HL students is clearly identified throughout.

The aim of this syllabus is to integrate concepts, topic content and the nature of science through 
inquiry. Approaches to learning in the study of physics are integrated with the topics, along with 
key scientific inquiry skills. This book comprises five main themes:
l Theme A: Space, time and motion
l Theme B: The particulate nature of matter
l Theme C: Wave behaviour
l Theme D: Fields
l Theme E: Nuclear and quantum physics

Each theme is divided into syllabus topics.

The book has been written with a sympathetic understanding that English is not the first language 
of many students.

No prior knowledge of physics by students has been assumed, although many will have taken an 
earlier course (and they will find some useful reminders in the content). 

In keeping with the IB philosophy, a wide variety of approaches to teaching and learning has been 
included in the book (not just the core physics syllabus). The intention is to stimulate interest and 
motivate beyond the confines of the basic physics content. However, it is very important students 
know what is the essential knowledge they have to take into the examination room. This is 
provided by the Key information boxes. If this information is well understood, and plenty of self-
assessment questions have been done (and answers checked), then a student will be well-prepared 
for their IB Physics examination.

The online Glossary is another useful resource. It's aim is to list and explain basic terminology 
used in physics, but it is not intended as a list of essential information for students. Many of the 
terms in the Glossary are highlighted in the book as 'Key terms' and also emphasized in the 
nearby margins.

The ‘In cooperation with IB’ logo signifies that this coursebook has been rigorously 
reviewed by the IB to ensure it fully aligns with the current IB curriculum and 
offers high-quality guidance and support for IB teaching and learning.
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How to use this book
The following features will help you consolidate and develop your understanding of physics, 
through concept-based learning.

• There are guiding questions at the start of every chapter, as signposts for inquiry.
• These questions will help you to view the content of the syllabus through the conceptual lenses of 

the themes.

Guiding questions

SYLLABUS CONTENT

 This coursebook follows the order of the contents of the IB Physics Diploma syllabus.
 Syllabus understandings are introduced naturally throughout each topic.

Key information

Throughout the book, you will find some content in pink boxes like this one. These highlight 
the essential Physics knowledge you will need to know when you come to the examination. 
Included in these boxes are the key equations and constants that are also listed in the IBDP 
Physics data booklet for the course.

Tools

The Tools features explore the skills and techniques that you require and are integrated into 
the physics content to be practiced in context. These skills can be assessed through internal 
and external assessment.

Inquiry process

The application and development of the Inquiry process is supported in close association 
with the Tools.

Nature of science
Nature of science (NOS) explores conceptual understandings related to the purpose, features and impact 
of scientific knowledge. It can be examined in Physics papers. NOS explores the scientific process 
itself, and how science is represented and understood by the general public. NOS covers 11 aspects: 
Observations, Patterns and trends, Hypotheses, Experiments, Measurements, Models, Evidence, 
Theories, Falsification, Science as a shared endeavour, and Global impact of science. It also examines the 
way in which science is the basis for technological developments and how these modern technologies, in 
turn, drive developments in science.

Key terms
 ◆ Definitions appear 

throughout the margins 
to provide context and 
help you understand the 
language of physics. There 
is also a glossary of all key 
terms online.

Common 
mistake
These detail 
some common 
misunderstandings and 
typical errors made by 
students, so that you can 
avoid making the same 
mistakes yourself.
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Content from the IBDP Physics data booklet is indicated with this icon and shown in bold. The 
data booklet contains electrical symbols, equations and constants that you need to familiarize 
yourself with as you progress through the course. You will have access to a copy of the data 
booklet during your examination.

Top tip!
This feature includes advice relating to the content being discussed and tips to help you retain the 
knowledge you need.

These provide a step-by-step guide showing you how to answer the kind of quantitative 
and other questions that you might encounter in your studies and in the assessment.

 WORKED EXAMPLE

International mindedness is indicated with this icon. It explores how the exchange of information 
and ideas across national boundaries has been essential to the progress of science and illustrates 
the international aspects of physics.

Self-assessment questions appear throughout the chapters, phrased to assist comprehension and 
recall, but also to help familiarize you with the assessment implications of the command terms. 
These command terms are defined in the online glossary. Practice exam-style questions and 
their answers, together with answers to most self-assessment questions are on the accompanying 
website, IB Extras: www.hoddereducation.com/ib-extras

The IB learner profile icon indicates material that is particularly useful to help you towards 
developing in the following attributes: to be inquirers, knowledgeable, thinkers, communicators, 
principled, open-minded, caring, risk-takers, balanced and reflective. When you see the icon, 
think about what learner profile attribute you might be demonstrating – it could be more than one.

LINKING QUESTIONS

These questions are introduced throughout each topic. They are to strengthen your understanding by 
making connections across the themes. The linking questions encourage you to apply broad, integrating and 
discipline-specific concepts from one topic to another, ideally networking your knowledge. Practise answering 
the linking questions first, on your own or in groups. The links in this coursebook are not exhaustive, you may 
also encounter other connections between concepts, leading you to create your own linking questions.

TOK
Links to Theory of Knowledge (TOK) allow you to develop critical thinking skills and deepen 
scientific understanding by bringing discussions about the subject beyond the scope of the content of 
the curriculum.

DB

TH
E IB LEARNER PRO

FILE

 ATL ACTIVITY 

Approaches to learning 
(ATL) activities, 
including learning 
through inquiry, are 
integral to IB pedagogy. 
These activities are 
contextualized through 
real-world applications 
of physics.
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About the author
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    Tools and Inquiry xi

Tools and Inquiry

Skills in the study of physics
The skills and techniques you must experience through the course are encompassed within the 
tools. These support the application and development of the inquiry process in the delivery of the 
physics course.

	n Tools
l Tool 1: Experimental techniques
l Tool 2: Technology
l Tool 3: Mathematics

	n Inquiry process
l Inquiry 1: Exploring and designing
l Inquiry 2: Collecting and processing data
l Inquiry 3: Concluding and evaluating

Throughout the programme, you will be given opportunities to encounter and practise the skills; 
and instead of stand-alone topics, they will be integrated into the teaching of the syllabus when 
they are relevant to the syllabus topics being covered. 

You can see what the Tools and Inquiry boxes look like in the How to use this book section on page vi.

The skills in the study of physics can be assessed through internal and external assessment. The 
Approaches to learning provide the framework for the development of these skills.

Thinking skills

Social skills

Communication
skills

Research skills

Self-management
skills

Experimental
techniques Technology Mathematics

Collecting and
processing data

Exploring and
designing

Concluding and
evaluating

	n Figure 0.01 Tools for physics 

Visit the link in the QR code or this website to view the Tools and Inquiry reference guide:  
www.hoddereducation.com/ib-extras
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 xii

Tools

	n Tool 1: Experimental techniques
Skill Description

Addressing safety of self, 
others and the environment

• Recognize and address relevant safety, ethical or environmental issues in an 
investigation.

Measuring variables Understand how to accurately measure the following to an appropriate level of 
precision: 
• Mass
• Time
• Length
• Volume
• Temperature
• Force
• Electric current
• Electric potential difference
• Angle
• Sound and light intensity

	n Tool 2: Technology
Skill Description

Applying technology to collect 
data

• Use sensors.
• Identify and extract data from databases.
• Generate data from models and simulations.
• Carry out image analysis and video analysis of motion.

Applying technology to process 
data

• Use spreadsheets to manipulate data.
• Represent data in a graphical form.
• Use computer modelling.

	n Tool 3: Mathematics
Skill Description

Applying general mathematics • Use basic arithmetic and algebraic calculations to solve problems.
• Calculate areas and volumes for simple shapes. 
• Carry out calculations involving decimals, fractions, percentages, ratios, 

reciprocals, exponents and trigonometric ratios.
• Carry out calculations involving logarithmic and exponential functions.
• Determine rates of change.
• Calculate mean and range.
• Use and interpret scientific notation (for example, 3.5 × 106).
• Select and manipulate equations.
• Derive relationships algebraically.
• Use approximation and estimation.
• Appreciate when some effects can be neglected and why this is useful.
• Compare and quote ratios, values and approximations to the nearest order 

of magnitude.
• Distinguish between continuous and discrete variables.
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    Tools and Inquiry xiii

Skill Description

• Understand direct and inverse proportionality, as well as positive and 
negative relationships or correlations between variables.

• Determine the effect of changes to variables on other variables in 
a relationship.

• Calculate and interpret percentage change and percentage difference.
• Calculate and interpret percentage error and percentage uncertainty.
• Construct and use scale diagrams.
• Identify a quantity as a scalar or vector.
• Draw and label vectors including magnitude, point of application 

and direction.
• Draw and interpret free-body diagrams showing forces at point of 

application or centre of mass as required.
• Add and subtract vectors in the same plane (limited to three vectors).
• Multiply vectors by a scalar.
• Resolve vectors (limited to two perpendicular components).

Using units, symbols and 
numerical values

• Apply and use SI prefixes and units.
• Identify and use symbols stated in the guide and the data booklet.
• Work with fundamental units.
• Use of units (for example, eV, eVc–2, ly, pc, h, day, year) whenever appropriate.
• Express derived units in terms of SI units.
• Check an expression using dimensional analysis of units (the formal process 

of dimensional analysis will not be assessed).
• Express quantities and uncertainties to an appropriate number of significant 

figures or decimal places.

Processing uncertainties • Understand the significance of uncertainties in raw and processed data.
• Record uncertainties in measurements as a range (±) to an appropriate precision.
• Propagate uncertainties in processed data in calculations involving addition, 

subtraction, multiplication, division and raising to a power.
• Express measurement and processed uncertainties—absolute, fractional 

(relative) and percentage—to an appropriate number of significant figures or 
level of precision.

Graphing • Sketch graphs, with labelled but unscaled axes, to qualitatively 
describe trends.

• Construct and interpret tables, charts and graphs for raw and processed data 
including bar charts, histograms, scatter graphs and line and curve graphs.

• Construct and interpret graphs using logarithmic scales. 
• Plot linear and non-linear graphs showing the relationship between two 

variables with appropriate scales and axes.
• Draw lines or curves of best fit.
• Draw and interpret uncertainty bars.
• Extrapolate and interpolate graphs.
• Linearize graphs (only where appropriate).
• On a best-fit linear graph, construct lines of maximum and minimum 

gradients with relative accuracy (by eye) considering all uncertainty bars.
• Determining the uncertainty in gradients and intercepts.
• Interpret features of graphs including gradient, changes in gradient, 

intercepts, maxima and minima, and areas under the graph.
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 xiv

Inquiry process

	n Inquiry 1: Exploring and designing
Skill Description

Exploring • Demonstrate independent thinking, initiative and insight.
• Consult a variety of sources.
• Select sufficient and relevant sources of information.
• Formulate research questions and hypotheses.
• State and explain predictions using scientific understanding.

Designing • Demonstrate creativity in the designing, implementation and presentation of 
the investigation.

• Develop investigations that involve hands-on laboratory experiments, 
databases, simulations and modelling.

• Identify and justify the choice of dependent, independent and control variables.
• Justify the range and quantity of measurements.
• Design and explain a valid methodology.
• Pilot methodologies.

Controlling variables Appreciate when and how to:
• calibrate measuring apparatus, including sensors
• maintain constant environmental conditions of systems
• insulate against heat loss or gain
• reduce friction
• reduce electrical resistance
• take background radiation into account.

	n Inquiry 2: Collecting and processing data
Skill Description

Collecting data • Identify and record relevant qualitative observations.
• Collect and record sufficient relevant quantitative data.
• Identify and address issues that arise during data collection.

Processing data • Carry out relevant and accurate data processing.

Interpreting results • Interpret qualitative and quantitative data.
• Interpret diagrams, graphs and charts.
• Identify, describe and explain patterns, trends and relationships.
• Identify and justify the removal or inclusion of outliers in data (no 

mathematical processing is required).
• Assess accuracy, precision, reliability and validity.

	n Inquiry 3: Concluding and evaluating
Skill Description

Concluding • Interpret processed data and analysis to draw and justify conclusions.
• Compare the outcomes of an investigation to the accepted scientific context.
• Relate the outcomes of an investigation to the stated research question 

or hypothesis.
• Discuss the impact of uncertainties on the conclusions.

Evaluating • Evaluate hypotheses.
• Identify and discuss sources and impacts of random and systematic errors.
• Evaluate the implications of methodological weaknesses, limitations and 

assumptions on conclusions.
• Explain realistic and relevant improvements to an investigation.
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A.1   Kinematics 1

KinematicsA.1

• How can the motion of a body be described quantitatively and qualitatively?
• How can the position of a body in space and time be predicted?
• How can the analysis of motion in one and two dimensions be used to solve real-life problems?

Guiding questions

Kinematics is the study of moving objects. In this topic we will describe motion by using 
graphs and equations, but the causes of motion (forces) will be covered in the next topic, 
A.2 Forces and Momentum. The ideas of classical physics presented in this chapter can 
be applied to the movement of all masses, from the very small (freely moving atomic 
particles) to the very large (stars).

To completely describe the motion of an object at any one moment we need to state its 
position, how fast it is moving, the direction in which it is moving and whether its motion 
is changing. For example, we might observe that a car is 20 m to the west of an observer 
and moving northeast with a constant (uniform) velocity of 8 m s−1. See Figure A1.1.

Of course, any or all, of these quantities might be changing. In real life the movement of 
many objects can be complicated; they do not often move in straight lines and they might 
even rotate or have different parts moving in different directions.

In this chapter we will develop an understanding of the basic principles of kinematics by dealing 
first with objects moving in straight lines, and calculations will be confined to those objects that 
have a uniform (unchanging) motion.

Tool 3: Mathematics

Identify a quantity as a scalar or a vector

Everything that we measure has a magnitude and a unit. 
For example, we might measure the mass of a book 
to be 640 g. Here, 640 g is the magnitude (size) of the 
measurement, but mass has no direction.

Quantities that have only magnitude, and no direction, 
are called scalars.

All physical quantities can be described as scalars or vectors.

Quantities that have both magnitude and direction are 
called vectors.

For example, force is a vector quantity because the 
direction in which a force acts is important.

Most quantities are scalars. Some common examples of 
scalars used in physics are mass, length, time, energy, 
temperature and speed.

However, when using the following quantities, we need to 
know both the magnitude and the direction in which they 
are acting, so they are vectors:
l displacement (distance in a specified direction)
l velocity (speed in a given direction)
l force (including weight)
l acceleration
l momentum and impulse
l field strength (gravitational, electric and magnetic).

In diagrams, all vectors are shown with straight arrows, 
pointing in a certain direction from the correct point 
of application.

The lengths of the arrows are proportional to the 
magnitudes of the vectors.

 ◆ Kinematics Study of motion.
 ◆ Classical physics Physics theories 

that pre-dated the paradigm shifts 
introduced by quantum physics and 
relativity.

 ◆ Uniform Unchanging.
 ◆ Magnitude Size.
 ◆ Scalars  Quantities that have only 

magnitude (no direction). 
 ◆ Vector A quantity that has both 

magnitude and direction.

20 m

8 m s–1

N

W E

S
stationary
observer

velocity,

car

	■ Figure A1.1 Describing the 
position and motion of a car
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2 Theme A: Space, time and motion

Distance and displacement

SYLLABUS CONTENT

 The motion of bodies through space and time can be described and analysed in terms of position, 
velocity and acceleration.

 The change in position is the displacement.
 The difference between distance and displacement.

The term distance can be used in different ways, for example we might say that the distance 
between New York City and Boston is 300 km, meaning that a straight line between the two cities 
has a length of 300 km. Or, we might say that the (travel) distance was 348 km, meaning the length 
of the road between the cities.

We will define distance as follows:

Distance (of travel) is the total length of a specified path between two points. SI unit: metre, m  

In physics, displacement (change of position) is often more important than distance:

The displacement of an object is the distance in a straight line from a fixed reference point in a 
specified direction.

Continuing the example given above, if a girl travels from 
New York to Boston, her displacement will be 300 km to the 
northeast (see Figure A1.2).

Both distance and displacement are given the symbol s and 
the SI unit metres, m. Kilometres, km, centimetres, cm, and 
millimetres, mm, are also in widespread use. We often use 
the symbol h for heights and x for small displacements.

Figure A1.3 shows the route of some people walking around a 
park. The total distance walked was 4 km, but the displacement 
from the reference point varied and is shown every few 
minutes by the vector arrows (a–e). The final displacement was 
zero because the walkers returned to their starting place.

 ◆ Distance Total length 
travelled, without 
consideration of directions. 

 ◆ Displacement, linear 
Distance in a straight line 
from a fixed reference 
point in a specified 
direction.

 ◆ Metre, m SI unit of 
length (fundamental).

South Station,
Boston, MA

Port Authority Bus Terminal,
New York

384km

300km

	■ Figure A1.2 Boston is a travel distance of 384 km and a 
displacement of 300 km northeast from New York City

a

b

c

d

e

start and
end here

	■ Figure A1.3 A walk in the park

Speed and velocity

SYLLABUS CONTENT

 Velocity is the rate of change of position.
 The difference between instantaneous and average values of velocity, speed and 

acceleration, and how to determine them.

	■ Speed
The displacement of Wellington from Auckland, New Zealand, is 494 km south 
(Figure A1.4). The road distance is 642 km and it is predicted that a car journey 
between the two cities will take 9.0 hours.
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A.1   Kinematics 3

If we divide the total distance by the total time (642 / 9.0) we 
determine a speed of 71 km h−1. In this example it should be 
obvious that the speed will have changed during the journey 
and the calculated result is just an average speed for the 
whole trip. The value seen on the speedometer of the car is 
the speed at any particular moment, called the 
instantaneous speed.

 ◆ Speed, v Average speed = distance travelled/time taken. 
Instantaneous speed is determined over a very short time interval, 
during which it is assumed that the speed does not change. 

 ◆ Reaction time The time delay between an event occurring and a 
response. For example, the delay that occurs when using a stopwatch. 

 ◆ Sensor An electrical component that responds to a change in 
a physical property with a corresponding change in an electrical 
property (usually resistance). Also called a transducer.

 ◆ Light gate Electronic sensor used to detect motion when an object 
interrupts a beam of light.

Tool 1: Experimental techniques

Understand how to accurately measure quantities to an appropriate level of precision: time

Accurate time measuring instruments are common, but the 
problem with obtaining accurate measurements of time is 
starting and stopping the timers at exactly the right moments.

Whenever we use stopwatches or timers operated by hand, 
the results will have an unavoidable and variable uncertainty 
because of the delays between seeing an event and pressing 
a button to start or stop the timer. The delay between seeing 
something happen and responding with some kind of action 
is known as reaction time. For example, for car drivers it 
is usually assumed that a driver takes about 0.7 s to press 
the brake pedal after they have seen a problem. (But some 
drivers will be able to react quicker than this.) A car will 
travel about 14 m in this time if it is moving at 50 km h−1. 
Reaction times will increase if the driver is distracted, tired, 
or under the influence of any type of drug, such as alcohol.

A simple way of determining a person’s reaction time 
is by measuring how far a metre ruler falls before it can 
be caught between thumb and finger (see Figure A1.5). 
The time, t, can then be calculated using the equation for 
distance, s = 5t2 (explained later in this topic).

If the distance the ruler falls s = 0.30

Rearranging for t, t = 
s
5  

= 
0.30

5
So, reaction time t = 0.25 s.

Under these conditions a typical reaction time is about 
0.25 s, but it can vary considerably depending on the 
conditions involved. The measurement can be repeated 
with the person tested being blindfolded to see if the 
reaction time changes if the stimulus (to catch the ruler) is 
either sound or touch, rather than sight.

In science experiments it is sensible to make time 
measurements as long as possible to decrease the effect of 
this problem. (This reduces the percentage uncertainty.) 
Repeating measurements and calculating an average will 
also reduce the effect of random uncertainties. If a stopwatch 
is started late because of the user’s reaction time, it may be 
offset by also stopping the stopwatch late for the same reason.

Electronics sensors, such as light gates, are very useful in 
obtaining accurate time measurements. See below.

	■ Figure A1.5 Determining reaction time

Auckland

494km 642km

Wellington

	■ Figure A1.4 Distance and displacement from Auckland to Wellington
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4 Theme A: Space, time and motion

There are a number of different methods in which speed can be measured in a school or college 
laboratory. Figure A1.6 shows one possibility, in which a glider is moving on a frictionless air 
track at a constant velocity. The time taken for a card of known length (on the glider) to pass 
through the light gate is measured and its speed can be calculated from length of card / time taken.

air track

light gate

glider

Tool 2: Technology

Use sensors

An electronic sensor is an electronic device used to convert a physical 
quantity into an electrical signal. The most common sensors respond 
to changes in light level, sound level, temperature or pressure.

A light gate contains a source of light that produces a narrow beam 
of light directed towards a sensor on the other side of a gap. When 
an object passes across the light beam, the unit behaves as a switch 
which turns a timer on or off very quickly.

Tool 3: Mathematics

Determine rates of change

The Greek capital letter delta, Δ, is widely 
used in physics and mathematics to 
represent a change in the value of a quantity.

For example, Δx = (x2 – x1), where x2 and x1 
are two different values of the variable x.

The change involved is often considered to 
be relatively small.

Most methods of determining speed involve measuring the small amount of time (Δt) taken to 
travel a certain distance (Δs). The SI unit for time is the second, s.

speed = 
distance travelled

time taken  
(SI unit m s–1)

This calculation determines an average speed during time Δt, but if Δt is small enough, we may 
assume that the calculated value is a good approximation to an instantaneous speed.

Speed is a scalar quantity. Speed is given the same symbol, (v), as velocity.

	■ Figure A1.7 The peregrine falcon is reported to be the world’s fastest animal (speeds measured up to 390 km h−1)

	■ Figure A1.6 Measuring 
speed in a laboratory

 ◆ Second, s SI unit of time 
(fundamental).
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A.1   Kinematics 5

Nature of science: Observations

Objects at rest

It is common in physics for people to refer to an object being at rest, meaning that it is not moving. But 
this is not as simple as it may seem. A stone may be at rest on the ground, meaning that it is not moving 
when compared with the ground: it appears to us to have no velocity and no acceleration. However, when 
the same stone is thrown upwards, at the top of its path its instantaneous speed may be zero, but it has an 
acceleration downwards.

We cannot assume that an object which is at rest has no acceleration; its velocity may be changing – 
either in magnitude, in direction, or both.

We may prefer to refer to an object being stationary, suggesting that an object is not moving over a 
period of time.

Of course, the surface of the Earth is moving, the Earth is orbiting the Sun, which orbits the centre 
of the Milky Way galaxy, which itself exists in an expanding universe. So, at a deeper level, we must 
understand that all motion is relative and nowhere is truly stationary. This is the starting point for the 
study of Relativity (Topic A.5).

 ◆ At rest Stays stationary 
in the same position.

 ◆ Milky Way The galaxy 
in which our Solar System 
is located.

	■ Velocity
Velocity, v, is the rate of change of position. It may be considered to be speed in a specified direction.

velocity, v = 
displacement

time taken
 = 

Δs
Δt 

(SI unit m s–1)

The symbol Δs represents a change of position (displacement).

Velocity is a vector quantity. 12 m s−1 is a speed. 12 m s−1 to the south is a velocity. We use positive 
and negative signs to represent velocities in opposite directions. For example, +12 m s−1 may 
represent a velocity upwards, while −12 m s−1 represents the same speed downwards, but we may 
choose to reverse the signs used.

Speed and velocity are both represented by the same symbol (v) and their magnitudes are 

calculated in the same way (v = 
Δs
Δt) with the same units. It is not surprising that these two terms 

are sometimes used interchangeably and this can cause confusion. For this reason, it may be better 
to define these two quantities in words, rather than symbols.

As with speed, we may need to distinguish between average velocity over a time interval, or 
instantaneous velocity at a particular moment. As we shall see, the value of an instantaneous 
velocity can be determined from the gradient of a displacement–time graph.

Top tip!
When a direction of motion is clearly stated (such as ‘up’, ‘to the north’, ‘to the right’ and so on), it is 
very clear that a velocity is being discussed. However, we may commonly refer to the ‘velocity’ of a 
car, for example, without stating a direction. Although this is casual, it is usually acceptable because 
an unchanging direction is implied, even if it is not specified. For example, we may assume that the 
direction of the car is along a straight road.

 ◆ Velocity, v Rate of 
change of position.
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6 Theme A: Space, time and motion

A satellite moves in circles along the same path around 
the Earth at a constant distance of 6.7 × 103 km from the 
Earth’s centre. Each orbit takes a time of 90 minutes.
a Calculate the average speed of the satellite.
b Describe the instantaneous velocity of the satellite.
c Determine its displacement from the centre of the 

Earth after
i 360 minutes
ii 405 minutes.

Answer

a v = 
circumference
time for orbit  

= 
2πr
Δt

 = 
(2 × π × 6.7 × 106)

(90 × 60)
 = 7.8 × 103 m s–1

b The velocity also has a constant magnitude of 
7.8 × 103 m s−1, but its direction is continuously changing. 
Its instantaneous velocity is always directed along a 
tangent to its circular orbit. See Figure A1.8.

v

	■ Figure A1.8 Satellite’s instantaneous velocity

c i 360 minutes is the time for four complete orbits. 
The satellite will have returned to the same place. 
Its displacement from the centre of the Earth 
compared to 360 minutes earlier will be the same. 
(But the Earth will have rotated.)

ii In the extra 45 minutes the satellite will have 
travelled half of its orbit. It will be on the opposite 
side of the Earth’s centre, but at the same distance. 
We could represent this as −6.7 × 103 km from the 
Earth’s centre.

WORKED EXAMPLE A1.1

 ◆ Orbit The curved 
path (may be circular) of 
a mass around a larger 
central mass.

 ◆ Tangent Line which 
touches a given curve at a 
single point.

1 Calculate the average speed (m s−1) of an athlete who 
can run a marathon (42.2 km) in 2 hours, 1 minute and 9 
seconds. (The men’s world record at the time of writing.)

    

	■ Figure A1.9  
Eliud Kipchoge, 
world record 
holder for the 
men’s marathon

2 A small ball dropped from a height of 2.0 m takes 0.72 s 
to reach the ground.

a Calculate 
2.0
0.72

b What does your answer represent?
c The speed of the ball just before it hits the ground is 

5.3 m s−1. This is an instantaneous speed. Distinguish 
between an instantaneous value and an average value.

d State the instantaneous velocity of the ball just before 
it hits the ground.

e After bouncing, the ball only rises to a lower height. 
Give a rough estimate of the instantaneous velocity of 
the ball as it leaves the ground.

3 A magnetic field surrounds the Earth and it can be 
detected by a compass. State whether it is a scalar or a 
vector quantity. Explain your answer.

4 On a flight from Rome to London, a figure of 900 km h−1 
is displayed on the screen.
a State whether this is a speed or a velocity.
b Is it an average or instantaneous value?
c Convert the value to m s−1.
d Calculate how long it will take the aircraft to travel a 

distance of 100 m.
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A.1   Kinematics 7

Acceleration

SYLLABUS CONTENT

 Acceleration is the rate of change of velocity.
 Motion with uniform and non-uniform acceleration.

Any variation from moving at a constant speed in a straight line is described as an acceleration.

Going faster, going slower and/or changing direction are all different kinds of acceleration 
(changing velocities).

When the velocity (or speed) of an object changes during a certain time, the symbol u is used 
for the initial velocity and the symbol v is used for the final velocity. These velocities are not 
necessarily the beginning and end of the entire motion, just the velocities at the start and end of 
the period of time that is being considered.

Acceleration, a, is defined as the rate of change of velocity with time:

a = 
Δv
Δt 

= 
(v – u)

t  
(SI unit m s–2)

One way to determine an acceleration is to measure two velocities and the time between the 
measurements. Figure A1.10 shows an example.

air track

light gate

glider

	■ Figure A1.10 Measuring two velocities to determine an acceleration

Acceleration is a vector quantity. For a typical motion in which displacement and velocity are both 
given positive values, a positive acceleration means increasing speed in the same direction (+Δv), 
while a negative acceleration means decreasing speed in the same direction (−Δv). In everyday 
speech, a reducing speed is often called a deceleration.

For a motion in which displacement and velocity are given negative values, a positive acceleration 
means a decreasing speed. For example, a velocity change from –6 m s−1 to –4 m s−1 in 0.5 s 
corresponds to an acceleration:

a = 
Δv
Δt

 = 
([–4]–[–6])

0.5
 = + 4 ms–2

As with speed and velocity, we may need to distinguish between average acceleration over a time 
interval, or instantaneous acceleration at a particular moment.

 ◆ Acceleration, a Rate 
of change of velocity with 
time. Acceleration is a 
vector quantity.

 ◆ Deceleration Term 
commonly used to describe 
a decreasing speed. 
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8 Theme A: Space, time and motion

A high-speed train travelling with a velocity of 84 m s−1 needs to slow down and stop in a 
time of one minute.
a Determine the necessary average acceleration.
b Calculate the distance that the train will travel in this time assuming that the 

acceleration is uniform.

Answer

a a = 
Δv
Δt 

= 
(0 – 84)

60  = –1.4 m s–2

 The acceleration is negative. The negative sign shows that the velocity is decreasing.

b average speed = 
(84 – 0)

2  = 42 m s–1

 distance = average speed × time = 42 × 60 = 2.5 × 103 m

 WORKED EXAMPLE A1.2

5 A car moving at 12.5 m s−1 accelerates uniformly on a straight road at a rate of 0.850 m s−2.
a Calculate its velocity after 4.60 s.
b What uniform rate of acceleration will reduce the speed to 5.0 m s−1 in a further 12 s?

6 An athlete accelerates uniformly from rest at the start of a race at a rate of 4.3 m s−2. How 
much time is needed before her speed has reached 8.0 m s−1?

7 A trolley takes 3.62 s to accelerate from rest uniformly down a slope at a rate of 0.16 m s−2. A 
light gate at the bottom of the slope records a velocity of 0.58 m s−1. What was the speed about 
halfway down the slope, 1.2 s earlier?

Inquiry 1: Exploring and designing

Designing

Suppose that the Principal of your school or college is worried 
about safety from traffic on the nearby road. He has asked your 
physics class to collect evidence that he can take to the police. 
He is concerned that the traffic travels too fast and that the 
vehicles do not slow down as they approach the school.
1 Using a team of students, working over a period of one 

week, with tape measures and stop watches, develop an 
investigation which will produce sufficient and accurate data 
that can be given in a report to the Principal. Explain how you 
would ensure that the investigation was carried out safely.

2 What is the best way of presenting a summary of this data?

TH
E IB LEARNER PRO

FILE

Tool 3: Mathematics

Interpret features of graphs

In order to analyse and predict motions we 
have two methods: graphical and algebraic. 
Firstly, we will look at how motion can be 
represented graphically.

Graphs can be drawn to represent any motion 
and they provide extra understanding and insight 
(at a glance) that very few of us can get from 
written descriptions or equations. Furthermore, 
the gradients of graphs and the areas under graphs 
often provide additional useful information.

	■ Displacement–time graphs and distance–time graphs
Displacement–time graphs, similar to those shown in Figure A1.11, show how the displacements 
of objects from a known reference point vary with time. All the examples shown in Figure A1.11 
are straight lines and are representing linear relationships and constant velocities.
l Line A represents an object moving away from the reference point (zero displacement) such 

that equal displacements occur in equal times. That is, the object has a constant velocity.  

 ◆ Linear relationship 
One which produces a 
straight line graph. 
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A.1   Kinematics 9

Any linear displacement–time graph represents a constant velocity (it does not need to start or 
end at the origin).

l Line B represents an object moving with a greater velocity than A.
l Line C represents an object that is moving back towards the reference point.
l Line D represents an object that is stationary (at rest). It has zero velocity and stays at the same 

distance from the reference point.

Figure A1.12 shows how we can represent displacements in opposite directions from the same 
reference point.

The solid line represents the motion of an object moving with a constant (positive) velocity. The 
object moves towards a reference point (where the displacement is zero), passes it, and then moves 
away from the reference point with the same velocity. The dotted line represents an identical speed 
in the opposite direction (or it could also represent the original motion if the directions chosen to 
be positive and negative were reversed).

Any curved (non-linear) line on a displacement–time graph represents a changing velocity, in 
other words, an acceleration. This is illustrated in Figure A1.13.
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	■ Figure A1.12 Motion in opposite directions 
represented on a displacement–time graph
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	■ Figure A1.13 Accelerations on displacement–time graphs

Figure A1.13a shows motion away from a reference point. Line A represents an object 
accelerating. Line B represents an object decelerating. Figure A1.13b shows motion towards a 
reference point. Line C represents an object accelerating. Line D represents an object decelerating. 
The values of the accelerations represented by these graphs may, or may not, be constant. (This 
cannot be determined without a more detailed analysis.)

In physics, we are usually more concerned with displacement–time graphs than distance–time 
graphs. In order to explain the difference, consider Figure A1.14.

Figure A1.14a shows a displacement–time graph for an object thrown vertically upwards with an 
initial speed of 20 m s−1 (without air resistance). It takes 2 s to reach a maximum height of 20 m. At 
that point it has an instantaneous velocity of zero, before returning to where it began after 4 s and 
regaining its initial speed. Figure A1.14b is a less commonly used graph showing how the same 
motion would appear on an overall distance–time graph.

Tool 3: Mathematics

Interpret features of graphs: gradient

In this topic we will need to repeatedly use the following information:
l The gradient of a displacement–time graph equals velocity.
l The gradient of a velocity–time graph equals acceleration.

In the following section we will explore how to measure and interpret gradients.
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	■ Figure A1.11 
Constant velocities on 
displacement–time graphs
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	■ Figure A1.14 
a Displacement–time and 
b distance–time graphs for an 
object moving up and then down
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10 Theme A: Space, time and motion

	■ Gradients of displacement–time graphs
Consider the motion at constant velocity represented by Figure A1.15.

The gradient of the graph = 
Δs
Δt

, which is the velocity of the object. A downwards sloping 

graph would have a negative gradient (velocity).

In this example,

constant velocity, v = 
Δs
Δt

 = 
(20 – 8.0)
(8.0 – 2.0)

 = 2.0 m s–1

Figure A1.16 represents the motion of an object with a changing velocity, 
that is, an accelerating object.

The gradient of this graph varies, but at any point it is still equal to the 
velocity of the object at that moment, that is, the instantaneous velocity.

The gradient (velocity) can be determined at any time by drawing a 
tangent to the curve, as shown.

The triangle used to calculate the gradient should be large, in order to 
make this process as accurate as possible. In this example:

velocity at time t2 = 
(18 – 3.0)
(23 – 5.0)

 = 0.83 m s–1

A tangent drawn at time t1 would have a smaller gradient and represent 
a smaller velocity. A tangent drawn at time t3 would represent a 
larger velocity.
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	■ Figure A1.16 Finding an instantaneous velocity 
from a curved displacement–time graph

 ◆ Gradient The rate 
at which one physical 
quantity changes in 
response to changes in 
another physical quantity. 
Commonly, for an y–x 

graph, gradient  = 
Δy
Δx

. 
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	■ Figure A1.15 Finding 
a constant velocity from a 
displacement–time graph

We have been referring to the object's displacement and velocity, although no direction has been 
stated. This is acceptable because that information would be included when the origin of the graph 
was explained. If information was presented in the form of a distance–time graph, the gradient 
would represent the speed.

In summary:

The gradient of a displacement–time graph represents velocity.

The gradient of a distance–time graph represents speed.

Figure A1.17 represents the motion of a train on a straight track between two stations.
a Describe the motion. b State the distance 

between the two stations.
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	■ Figure A1.17 Distance–time graph for train on a straight track

c Calculate the maximum 
speed of the train.

d Determine the average 
speed of the train.

Answer
a The train started from rest. For the first 90 s the train 

was accelerating. It then travelled with a constant 
speed until a time of 200 s. After that, its speed 
decreased to become zero after 280 s.

b 3500 m
c From the steepest, straight section of the graph:

 v = 
Δs
Δt = 

(3000 – 800)
(200 – 90)  = 20 m s–1

d average speed = 
total distance travelled

time taken  = 
3500
300  = 11.7 m s–1

WORKED EXAMPLE A1.3
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A.1   Kinematics 11

8 Draw a displacement–time graph for a swimmer 
swimming a total distance of 100 m at a constant speed of 
1.0 m s−1 in a swimming pool of length 50 m.

9 Describe the motion of a runner as shown by the graph in 
Figure A1.18.
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	■ Figure A1.18 Displacement–time graph for a runner

10 Sketch a displacement–time graph for the following 
motion: a stationary car is 25 m away; 2 s later it starts 
to move further away in a straight line from you with a 
constant acceleration of 1.5 m s−2 for 4 s; then it continues 
with a constant velocity for another 8 s.

11 Figure A1.19 is a displacement–time graph for an object.
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	■ Figure A1.19 A displacement–time graph for an object

a Describe the motion represented by the graph in 
Figure A1.19.

b Compare the velocities at points A and B.
c When is the object moving with its maximum and 

minimum velocities?
d Estimate values for the maximum and minimum 

velocities.
e Suggest what kind of object could move in this way.

	■ Velocity–time graphs and speed–time graphs
Figure A1.20, shows how the velocity of four objects changed with time. Any straight (linear) line 
on any velocity–time graph shows that equal changes of velocity occur in equal times – that is, it 
represents constant acceleration.
l Line A shows an object that has a constant positive acceleration.
l Line B represents an object moving with a greater positive acceleration than A.
l Line C represents an object that has a negative acceleration.
l Line D represents an object moving with a constant velocity – that is, it has zero acceleration.

Curved lines on velocity–time graphs represent changing accelerations.

Velocities in opposite directions are represented by positive and negative values.

We will return to the example shown in Figure A1.14 to illustrate the difference between 
velocity–time and speed–time graphs. Figure A1.21a shows how the speed of an object changes 
as it is thrown up in the air (without air resistance), reaches its highest point, where its speed has 
reduced to zero, and then returns downwards. Figure A1.21b shows the same information in terms 
of velocity. Positive velocity represents motion upwards, negative velocity represents motion 
downwards. In most cases, the velocity graph is preferred to the speed graph.0
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	■ Figure A1.21 a Speed–time and b velocity–time  
graphs for an object thrown upwards.
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	■ Figure A1.20 
Constant accelerations on 
velocity–time graphs
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12 Theme A: Space, time and motion

Gradients of velocity–time graphs

Consider the motion at constant acceleration shown by the straight line in Figure A1.22.
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	■ Figure A1.22 Finding the gradient of a velocity–time graph

The gradient of the graph = 
Δv
Δt

, which is equal to the acceleration of the object.

In this example, the constant acceleration:

a = 
Δv
Δt

 = 
(12.0 – 7.0)
(9.0 – 4.0)

 = + 1.0 m s–2

The acceleration of an object is equal to the gradient of the velocity–time graph.

A changing acceleration will appear as a curved line on a velocity–time graph. A numerical value 
for the acceleration at any time can be determined from the gradient of the graph at that moment. 
See Worked example A1.4.

The red line in Figure A1.23 shows an object decelerating (a decreasing negative 
acceleration). Use the graph to determine the instantaneous acceleration at a time of 10.0 s.
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	■ Figure A1.23 Finding an instantaneous acceleration from a velocity–time graph

Answer
Using a tangent to the curve drawn at t = 10 s.

Acceleration, a = 
Δv
Δt = 

(0 – 12)
(22 – 0) = –0.55 m s–2

The negative sign indicates a deceleration. In this example the large triangle used to determine 
the gradient accurately was drawn by extending the tangent to the axes for convenience.

 WORKED EXAMPLE A1.4
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A.1   Kinematics 13

Tool 3: Mathematics

Interpret features of graphs: areas under 
the graph

The area under many graphs has a physical meaning. As 
an example, consider Figure A1.24a, which shows part of 
a speed–time graph for a vehicle moving with constant 
acceleration. The area under the graph (the shaded area) 
can be calculated from the average speed, given by 
(v1 + v2)

2 , multiplied by the time, Δt.

The area under the graph is therefore equal to the distance 
travelled in time Δt. In Figure A1.24b a vehicle is moving 
with a changing (decreasing) acceleration, so that the 
graph is curved, but the same rule applies – the area under 
the graph (shaded) represents the distance travelled in 
time Δt.

The area in Figure A1.24b can be estimated in a number 
of different ways, for example by counting small squares, 
or by drawing a rectangle that appears (as judged by 
eye) to have the same area. (If the equation of the line 
is known, it can be calculated using the process of 
integration, but this is not required in the IB course.)

In the following section, we will show how a change in 
displacement can be calculated from a velocity–time graph.
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	■ Figure A1.24 Area under a speed–time graph for 
a constant acceleration and b changing acceleration

	■ Areas under velocity–time and speed–time graphs
As an example, consider again Figure A1.22. The change of displacement, Δs, between the fourth 
and ninth seconds can be found from (average velocity) × time.

Δs =  
(12.0 + 7.0)

2
 × (9.0 – 4.0) = 47.5 m

This is numerically equal to the area under the line between t = 4.0 s and t = 9.0 s (as shaded in 
Figure A1.22). This is always true, whatever the shape of the line.

The area under a velocity–time graph is always equal to the change of displacement.

The area under a speed–time graph is always equal to the distance travelled.

As an example, consider Figure A1.21a. The two areas under the speed–time graph are equal and 
they are both positive. Each area equals the vertical height travelled by the object. The total area = 
total distance = twice the height. Each area under the velocity graph also represents the height, but 
the total area is zero because the areas above and below the time axis are equal, indicating that the 
final displacement is zero – the object has returned to where it started.

 ◆ Integration 
Mathematical process used 
to determine the area under 
a graph.
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14 Theme A: Space, time and motion

Figure A1.25 shows a velocity–time graph for an athlete running 100 m in 10.0 s. The 
area under the curve is equal to 100 m and it equals the area under the dotted line. (The 
two shaded areas are judged by sight to be equal.) The initial acceleration of the athlete 
is very important, and in this example, it is about 5 m s−2.

    

	■ Figure A1.26 Elaine 
Thompson-Herah (Jamaica) 
won the women’s 100 m 
in the Tokyo Olympics in 
2021 in a time of 10.54 s

12 Look at the graph in Figure A1.27.
a Describe the straight-line motion represented by 

the graph.
b Calculate accelerations for the three parts of the journey.
c What was the total distance travelled?
d What was the average velocity?
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	■ Figure A1.27 

Velocity–time graph

13 The velocity of a car was read from its speedometer 
at the moment it started and every 2 s afterwards. The 
successive values (converted to m s−1) were: 0, 1.1, 2.4, 
6.9, 12.2, 18.0, 19.9, 21.3 and 21.9.
a Draw a graph of these readings.
b Use the graph to estimate

i the maximum acceleration
ii the distance covered in 16 s.

14 Look at the graph in Figure A1.28.
a Describe the straight-line motion of the object 

represented by the graph.
b Calculate the acceleration during the first 8 s.
c What was the total distance travelled in 12 s?
d What was the total displacement after 12 s?
e What was the average velocity during the 12 s interval?
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	■ Figure A1.28 

Velocity–time graph

15 Sketch a velocity–time graph of the following motion: 
a car is 100 m away and travelling along a straight 
road towards you at a constant velocity of 25 m s−1. 
Two seconds after passing you, the driver decelerates 
uniformly and the car stops 62.5 m away from you.

16 Figure A1.29 shows how the velocity of a car, moving in 
a straight line, changed in the first 5 s after starting.

 Use the area under the graph to show that the distance 
travelled was about 40 m.
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	■ Figure A1.29 
Determining the 
displacement of a car 
during acceleration
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	■ Figure A1.25 Velocity–time 
graph for an athlete running 100 m
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A.1   Kinematics 15

Tool 2: Technology

Use spreadsheets to manipulate data

Figure A1.30 represents how the velocities of two identical 
cars changed from the moment that their drivers saw 
danger in front of them and tried to stop their cars as 
quickly as possible. It has been assumed that both drivers 
have the same reaction time (0.7 s) and both cars decelerate 
at the same rate (−5.0 m s−2).

The distance travelled at constant velocity before the 
driver reacts and depresses the brake pedal is known 
as the ‘thinking distance’. The distance travelled while 
decelerating is called the ‘braking distance’. The total 
stopping distance is the sum of these two distances.

Car B, travelling at twice the velocity of car A, has twice 
the thinking distance. That is, the thinking distance is 
proportional to the velocity of the car. The distance travelled 
when braking, however, is proportional to the velocity 
squared. This can be confirmed from the areas under the 
v–t graphs. The area under graph B is four times the area 
under graph A (during the deceleration). This has important 
implications for road safety and most countries make sure 
that people learning to drive must understand how stopping 
distances change with the vehicle’s velocity. Some countries 
measure the reaction times of people before they are given a 
driving licence.

Set up a spreadsheet that will calculate the total 
stopping distance for cars travelling at initial speeds, u, 
between 0 and 40 m s−1 with a deceleration of −6.5 m s−2. 
(Make calculations every 2 m s−1.) The thinking distance 
can be calculated from st = 0.7u (reaction time 0.7 s).

In this example the braking time can be calculated from:

tb = 
u

6.5

and the braking distance can be calculated from:

sb = (u2)tb

Use the data produced to plot a computer-generated graph 
of stopping distance (y-axis) against initial speed (x-axis).
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 ◆ Spreadsheet (computer) 
Electronic document in 
which data is arranged 
in the rows and columns 
of a grid, and can be 
manipulated and used 
in calculations.

	■ Figure A1.30 Velocity–time 
graphs for two cars braking

	■ Acceleration–time graphs
In this topic, we are mostly concerned with constant accelerations. The graphs in Figure A1.31 
show five straight lines representing constant accelerations. A changing acceleration would be 
represented by a curved line on the graph.

a

0

−

+

t
A

B

C

a

0

D

−

+

t

a

0

−

+

t

E

	■ Figure A1.31 Graphs of constant acceleration

l Line A shows zero acceleration, constant velocity.
l Line B shows a constant positive acceleration (uniformly increasing velocity).
l Line C shows the constant negative acceleration (deceleration) of an object that is slowing 

down at a uniform rate.
l Line D shows a (linearly) increasing positive acceleration.
l Line E shows an object that is accelerating positively, but at a (linearly) decreasing rate.
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16 Theme A: Space, time and motion

Areas under acceleration–time graphs

Figure A1.32 shows the constant acceleration of a moving car.

Using a = 
Δv
Δt

, between the fifth and thirteenth seconds, the velocity of the car 
increased by:

Δv = aΔt = 1.5 × (13.0 – 5.0) = 12 m s−1

The change in velocity is numerically equal to the area under the line between t = 5 s and t = 
13 s (the shaded area in Figure A1.32). This is always true, whatever the shape of the line.

The area under an acceleration–time graph is equal to the change of velocity.
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	■ Figure A1.32 Calculating change of 
velocity from an acceleration–time graph

17 Draw an acceleration–time graph for a car that starts from rest, accelerates 
at 2 m s−2 for 5 s, then travels at constant velocity for 8 s, before decelerating 
uniformly to rest again in a further 2 s.

18 Figure A1.33 shows how the acceleration of a car changed during a 6 s interval.
 If the car was travelling at 2 m s−1 after 1 s, estimate a suitable area under 

the graph and use it to determine the approximate speed of the car after 
another 5 s.

19 Sketch displacement–time, velocity–time and acceleration–time graphs for a 
bouncing ball that was dropped from rest.

 Continue the sketches until the third time that the ball contacts the ground.
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	■ Figure A1.33 Acceleration–time 
graph for an accelerating car

TOK

Mathematics and the arts
l Why is mathematics so important in some areas of knowledge, particularly the natural sciences?

If you study Mathematics: Analysis and Approaches (SL or HL) or Mathematics: Applications and 
Interpretations (HL) you will explore how calculus is used to mathematically describe changing 
functions. The gradient of a function is found using the process of differentiation and the area under a 
curve is found using the process of integration. The mathematical procedures for calculus were developed 
by Isaac Newton and he first published his ‘method of fluxions’ as an appendix to his book Opticks 
in 1704. Newton is usually therefore credited with the ‘invention’ of calculus – although historians of 
science point to the earlier work of Gottfried Wilhelm Leibniz, published in 1684. Newton accused 
Leibniz of plagiarism, even though Leibniz’s work was published first! In fact, it is Leibniz’s notation 
that we still use today. So, who invented calculus?

 ◆ Calculus Branch of 
mathematics which deals 
with continuous change. 

 ◆ Differentiate 
Mathematically determine 
an equation for a rate 
of change.

TH
E IB LEARNER PRO

FILE
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A.1   Kinematics 17

Equations of motion for uniformly 
accelerated motion

SYLLABUS CONTENT

 The equations of motion for solving problems with uniformly accelerated motion as given by:

 s = 
(u + v)

2 t

 v = u + at

 s = ut + 
1
2at2

 v2 = u2 + 2as

The five quantities u, v, a, s and t are all that is needed to fully describe the motion of an object 
that is moving with uniform acceleration.
l u = velocity (speed) at the start of time t
l v = velocity (speed) at the end of time t
l a = acceleration (constant)
l s = displacement occurring in time t
l t = time taken for velocity (speed) to change from u to v and to travel a distance s.

If any three of the quantities are known, the other two can be calculated using the first two 
equations highlighted below.

If we know the initial velocity u and the uniform acceleration a of an object, then we can 
determine its final velocity v after a time t by rearranging the equation used to define acceleration:

a = 
(v – u)

t
 

This gives:

v = u + at

If an object moving with velocity u accelerates uniformly to a velocity v, then its average velocity is:

(u + v)
2

 

Then, since distance = average velocity × time:

s = 
(u + v)

2
t

These two equations can be combined mathematically to give two further equations, shown below. 
These very useful equations do not involve any further physics theory, they just express the same 
physics principles in a different way.

s = ut + 
1
2
 at2

v2 = u2 + 2as

DB

DBLINKING QUESTION
l How are the 

equations for 
rotational motion 
related to those for 
linear motion?

This question links 
to understandings in 
Topic A.4.

DB

 ◆ Equations of motion 
Equations that can be used 
to make calculations about 
objects that are moving 
with uniform acceleration. 
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18 Theme A: Space, time and motion

A Formula One racing car (see Figure A1.34) accelerates 
from rest at 18 m s−2.

	■ Figure A1.34 Formula One racing cars at the starting grid

a Calculate its speed after 3.0 s.
b Calculate how far it travels in this time.
c If it continues to accelerate at the same rate, determine 

its velocity after it has travelled 200 m from the start.

Answer
a  v = u + at = 0 + (18 × 3.0) = 54 m s−1

b  s = 
(u + v)

2 t = 
(0 + 54)

2  × 30 = 81 m 

 But note that the distance can be calculated directly, 
without first calculating the final velocity, as follows:

  s = ut + 
1
2at2 = (0 × 3.0) + (0.5 × 18 × 3.02) = 81 m

c  v2 = u2 + 2as = 02 + (2 × 18 × 200) = 7200
  v = 85 m s−1

 WORKED EXAMPLE A1.5

A train travelling at 50 m s−1 (180 km h−1) needs 
to decelerate uniformly so that it stops at a station 
2.0 kilometres away.
a Determine the necessary deceleration.
b Calculate the time needed to stop the train.

Answer
a  v2 = u2 + 2as
  02 = 502 + (2 × a × 2000)
  a = −0.63 m s−2

b  v = u + at 
  0 = 50 + (−0.63) × t
  t = 80 s
 Alternatively, you could use s = 

(u + v)
2 t

 WORKED EXAMPLE A1.6

In the following questions, assume that all accelerations 
are uniform.

20 A ball rolling down a slope passes a point P with a 
velocity of 1.2 m s−1. A short time later it passes point Q 
with a velocity of 2.6 m s−1.
a What was its average velocity between P and Q?
b If it took 1.4 s to go from P to Q, determine the 

distance PQ.
c Calculate the acceleration of the ball.

21 An aircraft accelerates from rest along a runway and 
takes off with a velocity of 86.0 m s−1. Its acceleration 
during this time is 2.40 m s−2.
a Calculate the distance along the runway that the 

aircraft needs to travel before take-off.
b Predict how long after starting its acceleration the 

aircraft takes off.
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A.1   Kinematics 19

22 An ocean-going cruiser can decelerate no quicker than 
0.0032 m s−2.

	■ Figure A1.35 Ocean-going cruise liner

a Determine the minimum distance needed to stop if 
the ship is travelling at 10 knots. (1 knot = 0.514 m s−1)

b How much time does this deceleration require?

23 An advertisement for a new car states that it can travel 
100 m from rest in 8.2 s.
a  Discuss why the car manufacturers express the 

acceleration in this way (or the time needed to reach a 
certain speed).

b  Calculate the average acceleration. 
c  Calculate the velocity of the car after this time.

24 A car travelling at a constant velocity of 21 m s−1 (faster than 
the speed limit of 50 km h−1) passes a stationary police car.

 The police car accelerates after the other car at 4.0 m s−2 
for 8.0 s and then continues with the same velocity until it 
overtakes the other car.
a When did the two cars have the same velocity?
b Determine if the police car has overtaken the other 

car after 10 s.
c By equating two equations for the same distance at 

the same time, determine exactly when the police car 
overtakes the other car.

25 A car brakes suddenly and stops 2.4 s later, after 
travelling a distance of 38 m.
a Calculate its deceleration.
b What was the velocity of the car before braking?

26 A spacecraft travelling at 8.00 km s−1 accelerates at 
2.00 × 10−3 m s−2 for 100 hours.
a How far does it travel during this acceleration?
b What is its final velocity?

27 Combine the first two equations of motion (given on 
page 17) to derive the second two equations:

 v2 = u2 + 2as

 s = ut + 
1
2
at2

Acceleration due to gravity
The motions of objects through the air are common 
events and deserve special attention.

At the start, we will consider only objects that are moving 
vertically up, or down, under the effects of gravity 
only. That is, we will assume (to begin with) that air 
resistance has no significant effect.

When an object held up in the air is released from rest, it 
will accelerate downwards because of the force of gravity. 
Figure A1.36 shows a possible experimental arrangement 
that could be used to determine a value for this acceleration.

Inquiry 2: Collecting and processing data

Collecting data

Figure A1.36 shows how the time for a steel ball to fall a certain distance can be 
determined experimentally.

Describe how this apparatus can be used to collect and record sufficient, relevant 
quantitative data which will enable an accurate value for the acceleration of free fall to be 
determined from a suitable graph.

s

ruler

electromagnet
steel ball

timer

trapdoor

	■ Figure A1.36 An experiment to 
measure the acceleration due to gravity

 ◆ Air resistance Resistive 
force opposing the motion 
of an object through air. 
A type of drag force.
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20 Theme A: Space, time and motion

In the absence of air resistance, all objects (close to the Earth’s surface) fall towards the Earth 
with the same acceleration, g = 9.8 m s−2

g is known as the acceleration of free fall due to gravity (sometimes called acceleration due to 
free fall).

g is not a true constant. Its value varies very slightly at different locations around the world. 
Although, to 2 significant figures (9.8) it has the same value everywhere on the Earth’s surface. 
A convenient value of g = 10 m s−2 is commonly used in introductory physics courses.

The acceleration of free fall (g) reduces with distance from the Earth. (For example, at a height 
of 100 km above the Earth’s surface the value of g is 9.5 m s−2.) We will return to this subject in 
Topic D.1.

A ball is dropped vertically from a height of 18.3 m. Assuming that the acceleration of free 
fall is 9.81 m s−2 and air resistance is negligible, calculate:
a its velocity after 1.70 s
b its height after 1.70 s
c its velocity when it hits the ground
d the time for the ball to reach the ground.

Answer
a  v = u + at = 0 + (9.81 × 1.70) = 16.7 m s–1

b  s = ut + 
1
2at2 = 0 + (12 × 9.81 × 1.702) = 14.2 m

 So, height above ground = (18.3 – 14.2) = 4.1 m
c  v2 = u2 + 2as = 02 + (2 × 9.81 × 18.3) = 359
  v = 18.9 m s−1

d  v = u + at
 18.9 = 0 + (9.81 × t)
  t = 1.93 s

 WORKED EXAMPLE A1.7

Tool 3: Mathematics

Appreciate when some effects can be neglected and why this is useful

When studying physics, you may be advised to make 
assumptions when answering numerical questions. For 
example: ‘assume that air resistance is negligible / is 
insignificant’. It is possible that this is a true statement, for 
example, air resistance will have no noticeable effect on 
a solid rubber ball falling 50 cm to the ground. However, 
the usual reason for advising you to ignore an effect is to 
make the calculation simpler, and not go beyond what is 
required in your course.

Calculating the time for a table-tennis ball dropped 
50 cm to the ground will result in an underestimate if air 
resistance is ignored, but the answer can be interpreted as 
a lower limit to the time taken, and you may be questioned 
on your understanding of that.

Other examples will be found in all topics. Examples 
include: assuming friction between surfaces is negligible 
(Topic A.2); assuming thermal energy losses are 
negligible (Topic B.1); assuming the internal resistance of 
a battery is negligible (Topic B.5).

 ◆ Acceleration due to 
gravity, g Acceleration 
of a mass falling freely 
towards Earth. On, or 
near the Earth’s surface, 
g = 9.8 ≈ 10 m s−2. Also 
called acceleration of 
free fall.

 ◆ Free fall Motion 
through the air under 
the effects of gravity but 
without air resistance. 

 ◆ Negligible Too small to 
be significant.

DB
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A.1   Kinematics 21

	■ Moving up and down

If gravity is the only force acting, all objects close to the Earth's surface have the same 
acceleration (9.8 m s−2 downwards), whatever their mass and whether they are moving down, 
moving up or moving sideways.

The velocity of an object moving freely vertically downwards will increase by 9.8 m s−1 every 
second. The velocity of an object moving freely vertically upwards will decrease by 9.8 m s−1 
every second.

Top tip!
Displacement, velocity and acceleration are 
all vector quantities and the signs used for 
motions up and down can be confusing.

If displacement measured up from the 
ground is considered to be positive, then 
the acceleration due to gravity is always 
negative. Velocity upwards is positive, 
while velocity downwards is negative.

If displacement measured down from the 
highest point is considered to be positive, 
then the acceleration due to gravity is always 
positive. Velocity upwards is negative, while 
velocity downwards is positive.

positive
velocity

negative
velocity

displacement
positive

acceleration
negative

acceleration
positive

displacement
positive

greatest
height

velocity
positive

velocity
negative

OR

	■ Figure A1.37 Directions of vectors

A ball is thrown vertically upwards and reaches a maximum height of 21.4 m. For the 
following questions, assume that g = 9.81 m s–2.
a Calculate the speed with which the ball was released.
b State any assumption that you made in answering a.
c Determine where the ball will be 3.05 s after it was released.
d Calculate its velocity at this time.

Answer
a  v2 = u2 + 2as
  02 = u2 + (2 × [−9.81] × 21.4)
  u2 = 419.9
  u = 20.5 m s−1

 In this example, the vector quantities directed upwards (u, v, s) are considered positive 
and the quantity directed downwards (a) is negative. The same answer would be 
obtained by reversing all the signs.

b It was assumed that there was no air resistance.

c  s = ut + 
1
2at2 = (20.5 × 3.05) + (12 × [–9.81] × 3.052)

  s = +16.9 m (above the ground)
d  v = u + at = 20.5 + (−9.81 × 3.05)
   = −9.42 m s−1 (moving downwards)

 WORKED EXAMPLE A1.8
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22 Theme A: Space, time and motion

In the following questions, ignore the possible effects of 
air resistance.

Use g = 9.81 m s−2.

28 Discuss possible reasons why the acceleration due to 
gravity is not exactly the same everywhere on or near the 
Earth’s surface.

29 a How long does it take a stone dropped from rest from 
a height of 2.1 m to reach the ground?

b If the stone was thrown downwards with an initial 
velocity of 4.4 m s−1, calculate the speed with which it 
hits the ground.

c If the stone was thrown vertically upwards with an 
initial velocity of 4.4 m s−1, with what speed would it 
hit the ground?

30 A small rock is thrown vertically upwards with an initial 
velocity of 22 m s−1.
a Calculate when its velocity will be 10 m s−1.
b  Explain why there are two possible answers to a.

31 A falling ball has a velocity of 12.7 m s−1 as it passes a 
window 4.81 m above the ground.

 Predict when the ball will hit the ground.

32 A ball is thrown vertically upwards with a velocity of 
18.5 m s−1 from a window that is 12.5 m above the ground.
a Determine when it will pass the same point 

moving down.
b With what velocity will it hit the ground?
c Calculate how far above the ground the ball was after 

exactly 2.00 s.

33 Two balls are dropped from rest from the same height. 
If the second ball is released 0.750 s after the first, and 
assuming they do not hit the ground, calculate the 
distance between the balls:
a 3.00 s after the second ball was dropped
b 2.00 s later.

34 A stone is dropped from rest from a height of 34 m. 
Another stone is thrown downwards 0.5 s later.

 If they both hit the ground at the same time, show that 
the second stone was thrown with a velocity of 5.5 m s−1.

Projectile motion

SYLLABUS CONTENT

 The behaviour of projectiles in the absence of fluid resistance, and the application of the equations of 
motion resolved into vertical and horizontal components.

 The qualitative effect of fluid resistance on projectiles, including time of flight, trajectory, velocity, 
acceleration, range and terminal speed.

In our discussion of objects moving through the air, we have so far only considered motion 
vertically up or down. Now we will extend that work to cover objects moving in any direction. 
A projectile is an object that has been projected through the air (for example: fired, launched, 
thrown, kicked or hit) and which then moves only under the action of the force of gravity (and air 
resistance, if significant). A projectile has no ability to power or control its own motion.

Tool 3: Mathematics

Resolve vectors

This process occurs in several places during the course, but the most prominent examples 
are resolving velocities (as below) and forces.

	■ Components of a projectile’s velocity
The instantaneous velocity of a projectile at any time can conveniently be resolved into vertical 
and horizontal components, vV and vH, as shown in Figure A1.38.

 ◆ Projectile An object 
that has been projected 
through the air and which 
then moves only under 
the action of the forces of 
gravity and air resistance. 

 ◆ Resolve (a vector) To 
express a single vector 
as components (usually 
two components which 
are perpendicular to each 
other). 
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A.1   Kinematics 23

velocity of
projectile, v

horizontal
component
of velocity

vH = v cos θ

vertical
component
of velocity
vV = v sin θ

θ

   	■ Figure A1.38 Vertical and horizontal components of velocity

Vertical and horizontal components of velocity, v:

vV = v sin θ

vH = v cos θ

A tennis player strikes the ball so that it leaves the racket with 
a velocity of 64.0 m s−1 at an angle of 6.0° below the horizontal. 
Calculate the vertical and horizontal components of this velocity.

Answer
vH = v cos θ = 64.0 × cos 6.0 = 64 m s−1 (63.649... seen on calculator display)
vV = v sin θ = 64.0 × sin 6.0 = 6.7 m s−1 downwards

 WORKED EXAMPLE A1.9

	■ Figure A1.39 A tennis 
player serving a ball

Components perpendicular to each other can be analysed separately

The vertical and horizontal components of velocity can be treated separately (independently) 
in calculations.

l Earlier in this topic, we stated that any object (close to the Earth's surface) which is affected 
only by gravity (no air resistance) will accelerate towards the Earth with an acceleration of 
9.8 m s−2. This remains true even if the object is projected sideways (so that its velocity has a 
horizontal component).

l If there is no air resistance, the horizontal component of a projectile’s velocity will remain 
constant (until it comes into contact with something else).

Figure A1.40 shows a stroboscopic picture of a bouncing 
ball. The time intervals between each image of the ball are all 
the same.

The horizontal separations of successive images of the 
ball are all the same because the horizontal component of 
velocity is constant. The vertical separations of successive 
images of the ball increase as the ball accelerates as it falls, 
and the separations decrease as the ball decelerates as it 
moves upwards after bouncing on the ground.

The path followed by a projectile (as seen in Figure A1.40) 
is called its trajectory. The typical shape of a freely moving 
projectile is parabolic. The horizontal distance covered is 
called the range of the projectile.

Common 
mistake
When using these 
equations make sure that 
the angle θ is the angle 
between the velocity and 
the horizontal.

DB

	■ Figure A1.40 Parabolic trajectory of a bouncing ball

 ◆ Stroboscope Apparatus 
used for observing rapid 
motions. It produces 
regular flashes of light at 
an appropriate frequency 
chosen by the user.

 ◆ Trajectory Path 
followed by a projectile.

 ◆ Parabolic In the 
shape of a parabola. The 
trajectory of a projectile is 
parabolic in a gravitational 
field if air resistance 
is negligible. 

 ◆ Range (of a projectile) 
Horizontal distance 
travelled before impact 
with the ground.
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24 Theme A: Space, time and motion

Figure A1.41 compares the trajectory of an object dropped vertically to the trajectory of an 
object projected horizontally at the same time. Note that both objects fall equal distances in 
the same time. This is true whatever the horizontal component of velocity (assuming 
negligible air resistance)

Object projected horizontally
A bullet was fired horizontally with a speed of 524 m s−1 from a height of 22.0 m 
above the ground. Calculate where it hit the ground. Assume that air resistance was 
negligible.

Answer
First, we need to calculate how long the bullet is in the air. We can do this by finding 
the time that the same bullet would have taken to fall to the ground if it had been 
dropped vertically from rest (so u = 0):

 s = ut + 
1
2at2

22.0 = 0 + (0.5 × 9.81 × t2)
 t = 2.12 s
Without air resistance the bullet will continue to travel with the same horizontal 
component of velocity (524 m s−1) until it hits the ground 2.12 s later. Therefore:
horizontal distance travelled = horizontal velocity × time
horizontal distance = 524 × 2.12 = 1.11 × 103 m (1.11 km)

 WORKED EXAMPLE A1.10

 ATL A1A: Thinking skills 

Providing a reasoned argument to 
support conclusions
Figure A1.42 shows an experimental arrangement in which a 
steel ball can be projected horizontally from a table top.

Sketch a graph to show the pattern of results that you would 
expect to see when the range x was measured for different 
heights, h. Explain your reasoning.

table top
h

x

projectile path

	■ Figure A1.42 Investigating range, x, travelled by a projectile

Object projected at an angle to the horizontal
A stone was thrown upwards from a height 1.60 m above the ground with a speed of 18.0 m s−1 
at an angle of 52.0° to the horizontal. Assuming that air resistance is negligible, calculate:
a its maximum height
b the vertical component of velocity when it hits the ground
c the time taken to reach the ground
d the horizontal distance to the point where it hits the ground
e the velocity of impact.

 ◆ Impact Collision 
involving relatively large 
forces over a short time. 

 WORKED EXAMPLE A1.11

initial horizontal velocity

object
projected

horizontally

object dropped
vertically

	■ Figure A1.41 The parabolic 
trajectory of an object projected 
horizontally compared with an 
object dropped vertically
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A.1   Kinematics 25

Answer

First, we need to know the two components of the initial velocity:
vV= v sin θ = 18.0 sin 52.0° = 14.2 m s−1

vH= v cos θ = 18.0 cos 52.0° = 11.1 m s−1

a Using v2 = u2 + 2as for the upwards vertical motion (with directions upwards 
considered to be positive), and remembering that at the maximum height v = 0, we get:

  0 = 14.22 + [2 × (−9.81) × s]
  s = +10.3 m above the point from which it was released; a total height of 11.9 m.
b Using v2 = u2 + 2as for the complete motion gives:
  v2 = 14.22 + [2 × (−9.81) × (−1.60)]
  v = 15.27 = 15.3 m s−1 downwards
c Using v = u + at gives:
  –15.27 = 14.2 + (−9.81)t
  t = 3.00 s
d Using s = vt with the horizontal component of velocity gives:
  s = 11.1 × 3.00 = 33.3 m
e Figure A1.43 illustrates the information we have so far, and the unknown angle, θ, and 

velocity, vi.

52°
θ11.1 m s–1

33.3 m

10.3 m

11.1 m s–1

15.3 m s–1

vi
18.0 m s–1

14.2 m s–1

1.6 m

	■ Figure A1.43 Object projected at an angle to the horizontal

 From looking at the diagram (Figure A1.43), we can use Pythagoras’s theorem to 
calculate the velocity of impact.

 (velocity of impact)2 = (horizontal component)2 + (vertical component)2

  vi
2 = 11.12 + 15.32

  vi = 18.9 m s−1

 The angle of impact with the horizontal, θ, can be found using trigonometry:

 tan θ = 
15.3
11.1

 θ = 54.0°

Top tip!
If we know the 
velocity and position 
of a projectile, we can 
always use its vertical 
component of velocity 
to determine:
l the time taken 

before it reaches its 
maximum height, 
and the time before 
it hits the ground

l the maximum height 
reached (assuming 
its velocity has 
an upwards 
component).

The horizontal 
component can then 
be used to determine 
the range.

369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   25369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   25 04/01/2023   19:2904/01/2023   19:29

SAMPLE PAGES



26 Theme A: Space, time and motion

TOK

The natural sciences
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?

The independence of horizontal and vertical motion in projectile motion may seem unexpected and 
counterintuitive. It requires imagination (some would say genius) to propose ideas and theories which are 
contrary to accepted wisdom and ‘common sense’. This is especially true in understanding the worlds of 
relativity and quantum physics, where relying on everyday experiences for inspiration is of little or no use.

It is worth remembering that many of the well-established concepts and theories of classical physics that 
are taught now in introductory physics lessons would have seemed improbable to many people at the time 
they were first proposed. For example, many people would say (incorrectly) that a force is needed to keep 
an object moving at constant speed (see Topic A.2).

	■ Fluid resistance and terminal speed
So far, we have only considered projectile motion in which air resistance is negligible. We will 
now broaden the discussion.

As any object moves through air, the air is forced to move out of the path of the object. This causes 
a force opposing the motion called air resistance, also known as drag. Drag forces will oppose the 
motion of an object moving in any direction through any gas or liquid. (Gases and liquids are both 
described as fluids because they can flow.) Such forces opposing motion are generally described 
as fluid resistance.

Figure A1.44 gives a visual impression of air resistance. It shows the movement of air (marked by 
streamers) past a model of a car. (The picture was taken in a wind tunnel, in which moving air was 
directed towards the vehicle.)

	■ Figure A1.44 Air flow over a clay aerodynamic model of a high-performance sports vehicle

 ◆ Drag Force(s) opposing 
motion through a fluid; 
sometimes called fluid 
resistance. 

 ◆ Fluid Liquid or gas.
 ◆ Fluid resistance 

(friction) Force(s) opposing 
motion through a fluid; 
sometimes called drag.

 ◆ Imagination Formation 
of new ideas that are not 
related to direct sense 
perception or experimental 
results.

 ◆ Intuition Immediate 
understanding, without 
reasoning.

 ◆ Inspiration Stimulation 
(usually to be creative).
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A.1   Kinematics 27

The value of an object’s terminal speed will depend on its cross-sectional area, shape and weight, 
as discussed in Topic A.2. The terminal speed of skydivers (Figure A1.46) is usually quoted at 
about 200 km h−1 (56 m s−1).

Terminal speed also depends on the density of the air. In October 2012 Felix Baumgartner (Figure 
A1.47), an Austrian skydiver, reached a world record speed of 1358 km h−1 by starting his jump 
from a height of about 39 km above the Earth’s surface, where the density of air is about 250 times 
less than near the Earth’s surface. In 2014 Alan Eustace completed a jump from greater altitude, 
but at 1323 km h−1 he did not break Baumgartner’s speed record.

Top tip!
The concept of a top 
(terminal) speed can 
also be applied to the 
horizontal motion of 
vehicles, like trains, cars 
and aircraft. As they 
travel faster, increasing 
air resistance reduces 
their acceleration 
to zero.

	■ Figure A1.46 Skydivers at their terminal speed 	■ Figure A1.47 Felix Baumgartner about 
to jump from a height of 39 km

Effect of fluid (air) resistance on projectiles

Without air resistance we assume that the horizontal component of a 
projectile’s velocity is constant, but with air resistance it decreases. Without 
air resistance the vertical motion always has a downwards acceleration of 
9.8 m s−2, but with air resistance the acceleration will be reduced for falling 
objects and the deceleration increased for objects moving upwards.

Figure A1.48 shows typical trajectories with and without air resistance (for 
the same initial velocity).

Air resistance reduces the range of a projectile and its trajectory will not 
be parabolic.

without air
resistance

with air
resistance

	■ Figure A1.48 Effect of air resistance 
on the trajectory of a projectile

Figure A1.45 represents the motion of an object falling towards Earth.

Line A shows the motion without air resistance and with a constant acceleration of 
9.8 m s−2 (≈ 10). Line B shows the motion more realistically, with air resistance.

When any object first starts to fall, there is no air resistance. As the object falls 
faster, the air resistance increases, so that the rate of increase in velocity becomes 
less. This is shown in the Figure A1.45 by line B becoming less steep. Eventually 
the object reaches a constant, maximum speed known as the terminal speed or 
terminal velocity (‘terminal’ means final).

Objects falling through fluids (such as air) have a maximum speed, called 
terminal speed, which occurs when their acceleration has reduced to zero 
because of increasing fluid resistance (as their velocity increases).
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	■ Figure A1.45 An example of a graph 
of velocity against time for an object 
falling under the effect of gravity, with 
(B) and without (A) air resistance

 ◆ Terminal speed 
(velocity) The greatest 
downwards speed of 
a falling object that is 
experiencing resistive 
forces (for example, air 
resistance). It occurs when 
the object’s weight is equal 
to the sum of resistive 
forces (+ upthrust).
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28 Theme A: Space, time and motion

Tool 2: Technology

Carry out image analysis and video analysis of motion

Video-capture technology is used in sports, such as tennis and soccer. Capturing the 
trajectory of a projectile on video allows us to analyse its motion frame-by-frame. For 
example, the cameras used in VAR in football usually capture 50 frames per second, so the 
motion of the projectile (the ball) can be observed at time intervals of 0.02 s.

Explain how you could use video analysis of motion to investigate the motion of a 
shuttlecock in a game of badminton.

	■ Figure A1.49 Consider how video analysis could be used to investigate the motion of a badminton shuttlecock.

TH
E IB LEARNER PRO

FILE
In the following questions, ignore the possible effects of air 
resistance. Use g = 9.81 m s−2.

35 At an indoor rifle range, a bullet was fired horizontally 
at the centre of a target 36 m away. If the speed of the 
bullet was 310 m s−1, predict where the bullet will strike 
the target.

36 Repeat Worked example A1.11 for a stone thrown with 
a velocity of 26 m s−1 at an angle of 38° to the horizontal 
from a cliff top. The point of release was 33 m vertically 
above the sea.

37 It can be shown that the maximum theoretical range of 
a projectile occurs when it is projected at an angle of 
45° to the ground (once again, ignoring the effects of air 
resistance). Calculate the maximum distance a golf ball 
will travel before hitting the ground if its initial velocity is 
72 m s−1. (Because you need to assume that there is no air 
resistance, your answer should be much higher than the 
actual ranges achieved by top-class golfers. Research to 
determine the actual ranges achieved in competition golf.)

38 A jet of water from a hose is aimed directly at the base of 
a flower, as shown in Figure A1.50. The water emerges 
from the hose with a speed of 3.8 m s−1.
a Calculate the vertical and horizontal components of 

the initial velocity of the water.
b How far away from the base of the plant does the 

water hit the ground?

0.84 m

θ

2.0 m

	■ Figure A1.50 Water from a hose aimed at the base of a flower

39 If the maximum distance a man can throw a ball is 
78 m, what is the minimum speed of release of the ball? 
(Assume that the ball lands at the same height from 
which it was thrown and that the greatest range for a 
given speed is when the angle is 45°.)

 ◆ Video analysis Analysis 
of motion by freeze-frame 
or slow-motion video 
replay.
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A.1   Kinematics 29

40  Figure A1.51 shows a player making a basketball shot.

	■ Figure A1.51 Basketball player making a shot

a In practice, air resistance can be considered negligible 
for a basketball. Suggest a reason why.

b Make a copy of the figure and add to it two other 
possible trajectories which will result in the ball 
arriving at the basket.

c Suggest which trajectory is best and explain 
your reasoning.

d Add to your drawing a possible trajectory that would 
enable a light-weight sponge ball to reach the basket.

Nature of science: Models
The motions of all projectiles are affected – often considerably – by air resistance. But the mathematics 
we have used to make predictions has assumed that air resistance is negligible. This is a recurring theme 
in physics: when theories are first developed, or when you are first introduced to a topic, the ideas are 
simplified. A ‘complete’ understanding of projectile motion may be expected at university level, but the 
topic is important enough that you should be introduced to the basic ideas at an earlier age.

In Worked example A1.10, the calculated answer predicts that a bullet will travel 1.1 km before striking 
the ground, although we should stress that this ‘assumes that there is no air resistance’. In reality, it 
should be well understood that air resistance cannot be ignored, and the bullet will not travel as far as 
calculated. This should not suggest that the calculation was not useful.

As your knowledge and experience increase, mathematical theories of projectile motion can be expanded 
to include the effects of air resistance – but this is beyond the limits of the IB Course. Similar comments 
can be applied to all areas of physics. This simplifying approach to gaining knowledge is not unique to 
physics but it is, perhaps, most obvious in the sciences.

LINKING QUESTION
l How does the 

motion of an object 
change within a 
gravitational field?

This question links 
to understandings in 
Topics A.3 and D.1.

Ballistics
The study of the use of projectiles is known as ballistics. Because of its close links to hunting and 
fighting, this is an area of science with a long history, going all the way back to spears, and bows 
and arrows. Figure A1.52 shows a common medieval misconception about the motion of cannon 
balls: they were thought to travel straight until they ran out of energy.

	■ Figure A1.52 Trajectories of cannon balls were commonly misunderstood

369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   29369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   29 04/01/2023   19:2904/01/2023   19:29

SAMPLE PAGES



30 Theme A: Space, time and motion

Photographs taken in quick succession became useful in analysing many types of motion in 
the nineteenth century, but the trajectories of very rapidly moving projectiles were difficult to 
determine until they could be filmed or illuminated by lights flashing very quickly (stroboscopes). 
The photograph of the bullet from a gun shown in Figure A1.53 required high technology, such 
as a very high-speed flash and very sensitive image recorders, in order to ‘freeze’ the projectile 
(bullet) in its rapid motion (more than 500 m s−1).

	■ Figure A1.53 A bullet ‘frozen’ by high-speed photography

‘Newton’s cannonball’ is a famous thought experiment concerning projectiles, in which Newton 
imagined what would happen to a cannonball fired (projected) horizontally at various very high 
speeds from the top of a very high mountain (in the absence of air resistance). See Figure A1.54.

The balls labelled A and B will follow parabolic paths to the Earth’s surface. B has a greater range 
than A because it was fired with greater velocity. Cannonball C has exactly the correct velocity 
that it never falls back to the Earth’s surface and never moves further away from the Earth. (The 
required velocity would be about 7 km s−1, but remember that we are assuming that there is no air 
resistance.) These ideas are developed further in Topic D.1.

Nature of science: Models
In a thought experiment, we use our imagination to answer 
scientific ‘what if…?’ type questions. Known principles or 
a possible theory are applied to a precise scenario, and the 
consequences thought through in detail. Usually, but not always, 
it would not be possible to actually carry out the experiment.

At the time of ‘Newton’s cannonball’ thought experiment 
(published in 1728) it would have been impossible to make any 
object move at 7 km s−1 and, even if that had been possible, air 
resistance would have quickly reduced its speed. Nevertheless, 
the thought processes involved advanced understanding and led to 
ideas of satellite motion. The first satellite to orbit the Earth was 
the Russian Sputnik 1 in 1957, which had a maximum speed of 
about 8 km s−1 and avoided air resistance by being above most of 
the Earth’s atmosphere.

Another (possible) thought experiment connected to this topic, 
and involving an assumption of no air resistance, is the dropping 
of two spheres of different masses from the same height on the 
Tower of Pisa. See Figure A1.55. Most historians doubt if there 
was an actual experiment at the Tower of Pisa that confirmed 
Galileo’s theory that both masses would fall at the same rate.

	■ Figure A1.55 Galileo’s famous experiment to 
demonstrate acceleration due to gravity

Two further famous thought experiments in physics are Maxwell’s 
demon and Schrödinger’s cat. Research online to find out how 
these thought experiments prompted new hypotheses and theories 
in physics.

A
B

C

	■ Figure A1.54 
Newton’s cannonball 
thought experiment

 ◆ Thought experiment 
An experiment that is 
carried out in the mind, 
rather than actually being 
done, normally because it 
is otherwise impossible.
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A.2   Forces and momentum 31

Forces and momentumA.2

• How can we represent the forces acting on a system both visually and algebraically?
• How can Newton’s laws be modelled mathematically?
• How can knowledge of forces and momentum be used to predict the behaviour of interacting bodies?

Guiding questions

The nature of force

SYLLABUS CONTENT

 Forces as interactions between bodies.

In everyday life we may describe a force as a push or a pull but, more generally, a force can be 
considered to be any type of interaction / influence on an object which will tend to make it start 
moving or change its motion if it is already moving (assuming that the force is unopposed). Many 
forces do not cause changes of motion, simply because the objects on which they are acting are not 
able to move freely. Forces also change the shapes of objects.

Scientists refer to forces ‘acting’ on objects, ‘exerting’ forces on objects and ‘applying’ forces to 
objects. If objects ‘interact’, this means there are forces between them.

The size of a force is measured in the SI unit newton, N. The direction in which a force acts on an 
object is important:

Forces, F, are vector quantities and are represented in drawings by arrows of scaled length, 
direction and point of application. All forces should be labelled with commonly accepted 
symbols, or names.

friction

weight

push upwards
from ground

chair

2F F

	■ Figure A2.2 Representing the 
forces in Figure A2.1

 ◆ Interaction Any event 
in which two or more 
objects exert forces on 
each other.

 ◆ Newton, N Derived 
SI unit of force.  
1 N = 1 kg m s−2.

(The vectors displacement, velocity and acceleration were introduced in Topic A.1.)

Most situations, such as the two boys moving a chair in Figure A2.1, involve several forces, 
not just the obvious forces arising from the boys’ actions.

Figure A2.2 shows all the forces acting on the chair. These include the weight of the chair, the 
friction opposing its movement and the push upwards from the floor which is supporting the 
chair. The boy on the left is pushing the chair with a force which is twice the size of the force, 
F, that the boy on the right is using.

We will return to force diagrams later, but first we need to identify and explain different types 
of force.

	■ Different types of force
In general, we can classify all forces as one of two kinds.
l Forces that involve physical contact. Examples include everyday pushes and pulls, friction 

and air resistance.

	■ Figure A2.1 Pushing and 
pulling a chair
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32 Theme A: Space, time and motion

l Forces that act ‘at a distance’ across empty space. Examples include magnetic forces and 
the force of gravity. These forces are more difficult to understand and can be described as 
‘field forces’.

We will now explore some important types of force in greater detail.

Weight

SYLLABUS CONTENT

 Gravitational force Fg as the weight of the body and calculated as given by: Fg = mg

The mass of an object may be considered to be a measure of the quantity of matter it contains. 
Mass has the SI unit kilogramme, kg. Mass does not change with location. This definition may 
seem rather vague, but this is because mass is such a fundamental concept it is difficult to explain 
in terms of other things. However, later in this topic we will provide an improved definition.

The weight, Fg, of a mass, m, is the gravitational force that pulls it towards the centre of the Earth 
(or any other planet). Weight and mass are connected by the simple relationship:

weight, Fg = mg 

Where g is the weight : mass ratio, which is called the gravitational field strength. It has the 
units N kg−1. 

g is numerically equal to the acceleration due to gravity (see Topic A.1). An explanation is given 
later in this topic.

Clearly, in principle, the weight of an object is not constant, but varies with location (where the 
value of g changes). The value of g varies with a planet’s or a moon’s mass and radius, and with 
distance from the planet’s centre of mass. For example, it has a value of 9.8 N kg–1 on the Earth’s 
surface, 1.6 N kg−1 on the surface of the Moon and 3.7 N kg−1 on Mars.

Weight is represented in a diagram by a vector arrow vertically downwards from the centre of 
mass of the object. See Figure A2.3. When an object is subjected to forces, it will behave as if 
all of its mass was at a single point: its centre of mass. (In a gravitational field, the same point is 
sometimes called its ‘centre of gravity’.)

An astronaut has a mass of 58.6 kg. Calculate her weight using data from the 
preceding paragraphs:
a on the Earth’s surface
b in a satellite 250 km above the surface (g = 9.1 N kg–1)
c on the surface of the Moon
d on the surface of Mars
e in ‘deep space’, a very long way from any planet or star.

Answer
a Fg = mg = 58.6 × 9.8 = 5.7 × 102 N
b Fg = mg = 58.6 × 9.1 = 5.3 × 102 N, which is only 7% lower than on the Earth’s surface
c Fg = mg = 58.6 × 1.6 = 94 N
d Fg = mg = 58.6 × 3.7 = 217 N
e 0 N, truly weightless

WORKED EXAMPLE A2.1

 ◆ Mass A measure of an 
object’s resistance to a 
change of motion (inertia). 

 ◆ Kilogramme, kg SI unit 
of mass (fundamental).

 ◆ Weight, Fg Gravitational 
force acting on a mass. 
Fg = mg.

 ◆ Gravitational 
field strength, g The 
gravitational force per 
unit mass (that would be 
experienced by a small test 
mass placed at that point). 

g = Fg/m (SI unit: N kg−1). 

Numerically equal to the 
acceleration due to gravity.

mass 65 kg

weight, 637N

weight, 147N

mass
15 kg

	■ Figure A2.3 Weight acts 
downwards from the centre 
of mass

DB

 ◆ Centre of mass Average 
position of all the mass of 
an object. The mass of an 
object is distributed evenly 
either side of any plane 
through its centre of mass. 
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A.2   Forces and momentum 33

1 Calculate the weight of the following objects on the 
surface of the Earth:
a a car of mass 1250 kg
b a new-born baby of mass 3240 g
c one pin in a pile of 500 pins that has a total mass 

of 124 g.

2 It is said that ‘an A380 airplane has a maximum take-off 
weight of 570 tonnes’ (Figure A2.4). A tonne is the name 
given to a mass of 1000 kg.
a What is the maximum weight of the aircraft (in 

newtons) during take off?
b The aircraft can take a maximum of about 850 

passengers. Estimate the total mass of all the 
passengers and crew.

c What percentage is this of the total mass of the 
airplane on take off?

d The maximum landing weight is ‘390 tonnes’. 
Suggest a reason why the aircraft needs to be less 
massive when landing than when taking off.

e Calculate the difference in mass and explain where 
the ‘missing’ mass has gone.

	■ Figure A2.4 The Airbus A380 is the largest passenger airplane in 
the world

3 A mass of 50 kg would have a weight of 445 N on the 
planet Venus. What is the strength of the gravitational 
field there? Compare it with the value of g on Earth.

4 Consider two solid spheres made of the same metal. 
Sphere A has twice the radius of sphere B. Calculate the 
ratio of the two spheres’ circumferences, surface areas, 
volumes, masses and weights.

 ◆ Force meter Instrument used to measure forces. Also sometimes 
called a newton meter or a spring balance.

 ◆ Calibrate Put numbered divisions on a scale.

 ◆ Weigh Determine the weight of an object. In everyday use the word 
‘weighing’ usually means quoting the result as the equivalent mass: 
‘my weight is 60 kg’ actually means I have the weight of a 60 kg mass 
(about 590 N).

Tool 1: Experimental techniques

Understand how to accurately 
measure quantities to an 
appropriate level of precision: force, 
weight and mass 

Forces are easily measured by the changes 
in length they produce when they squash or 
stretch a spring (or something similar). Such 
instruments are called force meters (also 
called newton meters or spring balances) – 
see Figure A2.5. In this type of instrument, 
the spring usually has a change of length 
proportional to the applied force. The length 
of the spring is shown on a linear scale, which 
can be calibrated (marked in newtons). The 
spring goes back to its original 
shape after it has measured 
the force.

Such instruments can be used for measuring forces acting 
in any direction, but they are also widely used for the 

measurement of the downwards force of weight. The other 
common way of measuring weight is with some kind of 
‘balance’ (scales). In an equal-arm balance, as shown in 
Figure A2.6, the beam will only balance if the two weights 
are equal. That is, the unknown weight equals the known 
weight. (Larger weights can be measured by positioning the 
pivot closer to the unknown weight and using the ‘principle 
of moments’ – mentioned in Topic A.4.)

Either of these methods can be used to determine (weigh) an 
unknown weight (N) and they rely on the force of gravity to 
do this, but such instruments may be calibrated to indicate 
mass (in kg or g) rather than weight. This is because we are 
usually more concerned with the quantity of something, rather 
than the effects of gravity on it. We usually assume that:

mass (kg) = 
weight (N)

9.8

anywhere on Earth because any variations in the 
acceleration due to gravity, g, are insignificant for most, 
but not all, purposes.

0
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	■ Figure A2.5 
A spring balance 
force meter
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34 Theme A: Space, time and motion

known
weight

unknown
weight

pivot

equal distances

	■ Figure A2.6 An equal-arm balance

Determining a mass without using its weight (gravity) is 
not so easy. Two ways we can do this are:
l If it is a solid and all the same material, its volume can 

be measured, then mass = volume × density (assuming 
that its density is known.)

l As we will see in Topic A.2, resultant force, mass and 
acceleration are connected by the equation F = ma, so 
that, if the acceleration produced by a known force can 
be measured, then the mass can be calculated.

Nature of science: Science as a shared endeavour
Science is a collaborative activity – scientists work together across the world to confirm (or dispute) 
findings by repeating experiments. Scientists review each other’s work (peer review) to make sure 
that it is reliable before it is published. Communication is an essential part of science, and precision 
in communication is very important. Scientists must agree to use specific terminology, which is why 
scientific terminology sometimes differs from everyday use of the same words.

Contact forces

Apart from obvious everyday pushes and pulls, the following terms should be understood:

Tension: pulling forces are acting tending to cause stretching.

Compression: forces are pushing inwards on an object (See Figure A2.7).

Both of these types of force will tend to change the shape of an object (deformation).

In the following sections we will discuss the following contact forces in more detail: normal 
forces, buoyancy forces, elastic restoring forces, surface friction and fluid friction.

Normal forces

SYLLABUS CONTENT

 Normal force FN is the component of the contact force acting perpendicular to the surface that 
counteracts the body.

When two objects come in contact, they will exert forces on each other. This is because the 
particles in the surfaces resist getting closer together. A simple example is a book on a table, as 
shown in Figure A2.8. The book presses down on the table with its weight, and the table pushes up 
on the book with an equal force (so that the book is stationary). This force from the table is called 
a normal force, FN. ‘Normal’ in this sense means that it is perpendicular to the surface. 

weight, mg

normal force, FN

	■ Figure A2.8 Normal force acting upwards on a book

If a force acts on a surface, the surface 
pushes back. The component of that force 
which is perpendicular to the surface is 
called a normal force.

 ◆ Peer review Evaluation 
of scientific work by 
experts in the same field 
of study.

 ◆ Tension (force) Force 
that tries to stretch an 
object or material.

 ◆ Compression (force) 
Force that tries to squash 
an object or material.

 ◆ Deformation Change 
of shape.

 ◆ Normal Perpendicular 
to a surface.

tension

FF

compression

FF

a

b

	■ Figure A2.7 Object under 
a tension and b compression
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A.2   Forces and momentum 35

Top tip!
Many students find the idea that solid and hard objects like walls, tables and floors can exert forces, 
difficult to comprehend, whereas forces from cushions, or trampolines, are easier to visualize and 
understand. Remember that solid materials will resist any deformation and push back, even if the change 
of shape is very, very small and not noticeable.

A normal force does not need to be vertical, nor equal to weight, as the two examples in 
Figure A2.9 illustrate.

normal force

normal force

weight

FN

	■ Figure A2.9 Other examples of normal forces

Buoyancy forces

SYLLABUS CONTENT

 Buoyancy force, Fb, acting on a body due to the displacement of the fluid as given by: Fb= ρVg, where 
V is the volume of fluid displaced.

We have discussed the normal contact forces which act upwards on objects placed on solid 
horizontal surfaces. Liquids also provide vertical forces upwards on objects placed in, or on them. 
Gases, too, provide some support, although it is often insignificant.

Buoyancy is the ability of any fluid (liquid or gas) to provide a vertical upwards force on an 
object placed in, or on it. This force is sometimes called upthrust. (Buoyancy can be explained 
by considering the difference in fluid pressures on the upper and lower surfaces of the object. 
Pressure is explained in Topic B.3.)

The magnitude of an upthrust will be greater in fluids of greater density.

Density is a concept with which you may be familiar, although it is not introduced in this course 
until Topic B.1.

density (SI unit: kg m−3) = 
mass

volume 
ρ = 

m
V

g cm−3 is also widely used as a unit for density. A density of 1000 kg m−3 (the density of pure water 
at 0 °C) is equivalent to 1.000 g cm−3. It is also useful to know that one litre (1l) of water has a 
volume of 1000 cm3 and has a mass of 1.00 kg.

 ◆ Buoyancy force Vertical 
upwards force on an 
object placed in or on a 
fluid. Sometimes called 
upthrust. 

 ◆ Density 
mass

volume
. 
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36 Theme A: Space, time and motion

Figure A2.10 shows two forces acting on a rock immersed in water. Its weight is greater than the 
buoyancy force, so it is sinking.

weight, mg

buoyancy force, Fb
	■ Figure A2.10 Forces on an 

object immersed in a fluid

This area of classical physics was first studied more than 2250 years ago in Syracuse, Italy by 
Archimedes (from Greece, who identified the following principle, which still bears his name):

When an object is wholly or partially immersed in a fluid, it experiences a buoyancy force, Fb, 

equal to the weight of the fluid displaced. Since weight = mg, and density, ρ = 
m
V

: 

Fb = ρVg

TOK

The natural sciences
l What is the role of imagination in the natural sciences?

Myths, stories and science

The story of Archimedes’ discovery of the principle of 
displacement is well known. The story is that Archimedes was 
asked by the king of Syracuse, Hiero, to check whether his 
goldsmith was trying to cheat him by mixing cheaper metals with 
the gold of a wreath in honour of the gods. Archimedes accepted 
the challenge, although was uncertain how to establish the true 
composition of the wreath crown. Reputedly, the idea came to him 
while sitting in the bath: if the wreath contained other metals, it 
would be less dense than gold, and as such would need to have a 
greater volume to achieve the same weight. Archimedes saw that 
he could test the composition of the wreath by measuring how 
much water was displaced by it, so measuring its volume and so 
allowing him to compare its density to that of gold. As the story 
relates, when Archimedes discovered this he shouted ‘I have found 
it!’ or ‘Eureka!’ in Greek and ran naked through the streets of 
Syracuse to give Hiero the news!

In fact, this story was never recorded by Archimedes himself and 
is found in the writings of a Roman architect from much later in 
the first century BCE called Vitruvius. Many who heard the story 
doubted it – including Galileo Galilei, who pointed out in his 
work ‘The Little Balance’ that Archimedes could have achieved 
a more precise result using a balance and the law of buoyancy he 
already knew. But the story persists, perhaps because it is a great 
way to visualize and so understand the concepts of displacement 
and density.

	■ Figure A2.11 A statue of Archimedes in a bathtub demonstrates the 
principle of the buoyant force. Located at Madatech, Israel’s National 
Museum of Science, Technology and Space in Haifa

Consider: In what ways does the story of Archimedes resemble 
a thought experiment (see Topic A.1)? Do myths and stories 
serve always to obscure or confuse scientific truths? Can they 
sometimes enlighten us, too?

TH
E IB LEARNER PRO

FILE

 ◆ Archimedes’ principle 
When an object is wholly 
or partially immersed 
in a fluid, it experiences  
buoyancy force equal to 
the weight of the fluid 
displaced.

DB
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A.2   Forces and momentum 37

A piece of wood has a volume of 34 cm3 and a mass of 29 g.
a Calculate its weight.
b Determine the volume of water that it will displace if it is completely under water.
c What buoyancy force will it experience while under water?  

(Assume density of water = 1000 kg m−3.)
d What resultant force will act on the wood?
e State what will happen to the wood if it is free to move.
f  Repeat a–e for the same piece of wood when it is surrounded by air (density 

1.3 kg m−3).

Answer
a weight = mg = (29 × 10−3) × 9.8 = 0.28 N downwards
b 34 cm3

c Weight of water displaced = mg = Vρg = (34 × 10−6) × 1000 × 9.8 = 0.33 N upwards
d 0.33 − 0.28 = 0.05 N upwards
e It will move (accelerate) up to the surface, where it will float.
f (see a–e below)
a Weight = 0.28 N downwards, as before
b 34 cm3 as before
c Weight of air displaced = mg = Vρg = (34 × 10–6) × 1.3 × 9.8 = 4.3 × 10−4 N upwards. 

Which is very small!
d 0.28 – (4.3 × 10–4) ≈ 0.28 N downwards. The buoyancy force in air has an insignificant 

effect on the wood.
e It will move (accelerate) down towards the Earth.

WORKED EXAMPLE A2.2

Floating
An object placed on the surface of water (or any other liquid) will move lower until it displaces its 
own weight of water. See Figure A2.12. Then there will be no overall force acting on it, because 
the buoyancy force upwards (upthrust) will be equal to its weight downwards. If that is not 
possible, it will sink.

Continuing the numerical Worked example A2.2:

The wood has a weight of 0.28 N, so when floating it will displace water of this weight. Density of 
pure water = 1000 kg m−3.

Weight = 0.28 = Vρg = V × 1000 × 9.8

V = 2.9 × 10−5 m3. That is, 29 cm3. The wood will float with 29 cm3 below the water surface and 
5 cm3 above the surface, as shown in Figure A2.13.

W

Fb

	■ Figure A2.12 A floating 
object

5 cm3

29 cm3

buoyancy force = 0.284 N

weight = 0.284 N

	■ Figure A2.13 Floating 
wood
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38 Theme A: Space, time and motion

5 a Calculate the buoyancy force acting on a boy of mass 
60 kg and volume 0.0590 m3 (use g = 9.81 N kg–1)
i in water of density 1000 kg m−3

ii in air of density 1.29 kg m−3.
b Will the boy sink or float in water? Explain 

your answer.
c Suggest why he would float easily if he was in the 

Dead Sea. See Figure A2.14.

	■ Figure A2.14 Floating in the Dead Sea

d Calculate a value for the ratio: boy’s weight / 
buoyancy force in air.

6 A wooden cube with a density of 880 kg m−3 is floating 
on water (density 1000 kg m−3). If the sides of the cube 
are 5.5 cm long and the cube is floating with a surface 
parallel to the water’s surface, show that the depth of 
wood below the surface is 4.8 cm.

7 After the rock shown in Figure A2.10 begins to move 
downwards (sink) another force will act on it. State the 
name of that force.

8 Outline the reasons why a balloon filled with helium will 
rise (in air), while a balloon filled with air will fall.

9 Learning to scuba dive involves being able to remain 
‘neutrally buoyant’, so that the diver stays at the same 
level under water. Explain why breathing in and out 
affects the buoyancy of a diver.

    

	■ Figure A2.15 How 
much of an iceberg is 
submerged?

10 It is commonly said that about 10% of an iceberg is above 
the surface of the sea (Figure A2.15). Use this figure to 
estimate a value for the density of sea ice. Assume the 
density of sea water is 1025 kg m−3.

Elastic restoring forces

SYLLABUS CONTENT

 Elastic restoring force, FH, following Hooke’s law as given by: FH = – kx, where k is the spring constant.

When a force acts on an object it can change its shape: then we say that there is a deformation. 
Sometimes the deformation will be obvious, such as when someone sits on a sofa; sometimes the 
deformation will be too small to be seen, such as when we stand on the floor.

If an object returns to its original shape after the force has been removed, we say that the 
deformation was elastic. We hope and expect that most of the objects we use in everyday life 
behave elastically, because after we use them, we want them to return to the same condition as 
before their use. If they do not, we say that they have passed their elastic limit. 

 ◆ Elastic behaviour A 
material regains its original 
shape after a force causing 
deformation has been 
removed.

 ◆ Elastic limit The 
maximum force and/
or extension that a 
material, or spring, can 
sustain before it becomes 
permanently deformed.

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   38369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   38 04/01/2023   20:1204/01/2023   20:12

SAMPLE PAGES



A.2   Forces and momentum 39

Common mistake
Rubber bands behave elastically and they are useful because they can stretch a lot and exert inwards 
forces on the objects they are wrapped around. Because of this behaviour, the word ‘elastic’ in common 
usage has also come to mean ‘easy to stretch’ – which is different from its true meaning in science. Most 
people would be surprised to learn that steel usually behaves elastically.

How deformation depends on force
How any object, or material, responds when forces act on them is obviously very important 
information when considering their use in practical situations.

The deformation of a steel spring is a common starting investigation because it is easy to measure 
and it will usually stretch regularly and elastically (unless over-stretched). See Figure A2.16.

Figure A2.17 shows typical results. The weights provide the downwards force, F. In this case the 
deformation is called the extension of the spring, x, and it is usually plotted on the horizontal axis 
of graphs.
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	■ Figure A2.16 Steel spring investigation

Fo
rc

e 
F/

N

Extension x/m
0

0

k =
ΔF
Δx

Limit of
proportionality

	■ Figure A2.17 Results of stretching a steel spring

Most of the graph is a straight line passing through the origin. (The coils of the spring should not 
be touching each other at the beginning.) The conclusion is that the force, F, and the extension, x, 
are proportional to each other, up to a limit (as shown on the graph). The graph also shows that the 
spring gets easier to stretch after the limit of proportionality has been passed. For the linear part of 
the graph, starting at the origin: F ∝ x.

The constant of proportionality is given the symbol k: F = kx.

k is a measure of the ‘stiffness’ of the spring and is commonly called the spring constant (or the 
force constant). It can be determined from the gradient of the graph:

k = 
ΔF
Δx

 

k has the SI units N m–1. (N cm–1 is also widely used.)

Hooke’s law
In the seventeenth century, Robert Hooke was famously the first to publish a quantitative study of 
springs. The physics law that describes his results is still used widely and bears his name:

Hooke’s law for elastic stretching: restoring force, FH = –kx 

Top tip!
No material will behave 
elastically under all 
conditions. They all 
have their limits: elastic 
limits. For this reason, it 
is probably sensible not 
to describe a material 
as being ‘elastic’. It 
is better to say that 
it behaved elastically 
under the conditions at 
that time.

 ◆ Extension Displacement 
of the end of an object that 
is being stretched. 

DB

 ◆ Spring constant, k 
The constant seen 
in Hooke’s law that 
represents the stiffness of a 
spring (or other material).
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40 Theme A: Space, time and motion

This is essentially the same as the equation F = kx, but the symbol FH has been used for the force 
(to show that it is Hooke’s law stretching), and the force refers to the restoring force within 
the spring, tending to return it to its original shape – this force is equal in size but opposite in 
direction to the externally applied force from the weights. The negative sign has been included to 
indicate that the restoring force acts in the opposite direction to increasing extension.

Nature of science: Models

Obeying the law

Sometimes, everyday language differs from scientific terminology (for example, when speaking about 
‘weight’). So, what are ‘laws’ in science? If the extension of a stretched material is proportional to the force, 
we describe it as ‘obeying’ Hooke’s law. In what way is that similar / different to ‘obeying’ a legal law?

Archimedes’ description of buoyancy forces is described as a ‘principle’. How are scientific ‘principles’ 
different from scientific ‘laws’?

Research this online using search terms such as ‘difference scientific principle and law’.

How might these concepts relate to theories and models in science?

TH
E IB LEARNER PRO

FILE

Tool 3: Mathematics

Extrapolate and interpolate graphs

A curve of best fit is usually drawn to cover a specific 
range of measurements recorded in an experiment, as 
shown in Figure A2.18. The diagram indicates how values 
for y can be determined for a chosen values of x. If we want 
to predict other values within that range, we can usually do 
that with confidence. This is called interpolation.

x0

extrapolation

interpolation

extrapolation 

range of
experimental

results

0

y

	■ Figure A2.18 Interpolating and extrapolating to find values on the 
y-axis

If we want to predict what would happen outside the range 
of measurements (extrapolation) we need to extend the 

line of best fit. Lines are often extrapolated to see if they 
pass through the origin, or to find an intercept, as shown 
in Figure A2.18.

Predictions made by extrapolation should be treated 
with care, because it may be wrong to assume that the 
behaviour seen within the range of measurements also 
applies outside that range.

2

5

10

15

20

25

30

35

4 6 8 11
0

0
Extension/cm

Fo
rc

e/
N

9 101 3 5 7

	■ Figure A2.19 F–x graph for stretching a spring

Force–extension graphs, such as seen in Figure A2.19, are 
an interesting example.
a Use the graph to determine values for extensions when 

the force was 25 N, 10 N and 35 N.
b Use the graph to determine a possible value for the 

intercept on the force axis, and explain what it represents.
c Comment on your answers.

 ◆ Interpolate Estimate a value 
within a known data range.

 ◆ Extrapolate Predict 
behaviour that it outside of the 
range of available data.

LINKING QUESTION
l How does the 

application of a 
restoring force 
acting on a particle 
result in simple 
harmonic motion?

This question links 
to understandings in 
Topic C.1.

 ◆ Restoring force Force 
acting in the opposite 
direction to displacement, 
returning an object to its 
equilibrium position. 

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   40369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   40 04/01/2023   20:1204/01/2023   20:12

SAMPLE PAGES



A.2   Forces and momentum 41

When a weight of 12.7 N was applied to a spring its length 
was 15.1 cm. When the force increased to 18.3 N, the 
length increased to 18.1 cm because the extension was 
proportional to the force.
a Determine the spring constant.
b Calculate the length of the spring when the force 

was 15.0 N.
c Explain why it is impossible to be sure what the length 

of the spring would be if the force was 25 N.

Answer

a k = 
ΔF
Δx  = 

(18.3 – 12.7)
(18.1 – 15.1) = 1.87 N cm−1. Which is the 

same as 187 N m−1.

b Consider the extension from a length of 15.1 cm:

 Δx = 
ΔF
k  = 

(15.0 – 12.7)
1.87  = 1.23 cm

 So that, length = 15.1 + 1.23 = 16.3 cm
c  The spring may have passed its limit of proportionality.

 WORKED EXAMPLE A2.3

The results shown in Figure A2.19 were probably taken as the spring was loaded (as the weight 
was increased). If the extension is measured as the weight is reduced the results will be similar, 
but only if the elastic limit has not been exceeded.

The elastic limit of the spring is not shown on the graph, but it is often assumed to be close to, or 
the same as, the limit of proportionality. In other words, when a spring stretches, such as its 
extension is proportional to the force, we assume that it is behaving elastically. That may or may 
not be true for other materials.

Force–extension graphs and the concepts of elastic limits and ‘spring constants’ are not 
restricted to describing springs. They are widely used to represent the behaviour of many 
materials. Figure A2.20 shows a typical graph obtained when a metal wire is stretched and 
then the load is removed.

The force is proportional to the extension up until point P. During this time the particles in the 
metal are being pulled slightly further apart and we may assume that the metal is behaving 
elastically. But when the force is increased further, the wire begins to stretch more easily, 
the elastic limit is passed and a permanent deformation occurs. When the wire is unloaded 
the atoms move back closer together, so that the gradient of the graph is the same as for the 
loading graph, but the wire has a permanent deformation after all force has been removed.

11 A spring has a spring constant of 125 N m−1 and will 
become permanently deformed if its extension is greater 
than 20 cm.
a Assuming that it behaves elastically, what extension 

results from a tensile force of 18.0 N?
b What is the maximum force that should be used with 

this spring?

12 When a mass of 200 g was hung on a spring its length 
increased from 4.7 cm to 5.3 cm.
a Assuming that it obeyed Hooke’s law, what was its 

spring constant?
b The spring behaves elastically if the force does not 

exceed 10 N. What is the length of the spring with 
that force?

13 Figure A2.21 shows a force–extension graph for a piece 
of rubber which was first loaded, then unloaded.

0
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loading

	■ Figure A2.21 Stretching rubber

a Does the rubber behave elastically? Explain 
your answer.

b Does the rubber obey Hooke’s law under the 
circumstances shown by the graph? Explain 
your answer.

0
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P

loading

	■ Figure A2.20 Stretching a 
metal wire
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42 Theme A: Space, time and motion

Surface friction

SYLLABUS CONTENT

 Surface frictional force, Ff, acting in a direction parallel to the plane of contact between a body and a 
surface, on a stationary body as given by: Ff  μsFN, or a body in motion as given by: Ff = μdFN, where 
μs and μd are the coefficients of static and dynamic friction respectively.

When we move an object over another surface (or try to move it), forces parallel to the surfaces 
will resist the movement. Collectively, these forces are known as surface friction. The causes of 
friction can be various, and it is well known that friction can often be difficult to analyse or predict. 
Figure A2.22 shows a typical simple frictional force diagram. (The frictional force acting on the 
ground is not shown.) The block is moving to the right and the frictional force is acting to the left.

frictional force
on block

tension in rope

	■ Figure A2.22 Frictional force on a block opposing its 
motion to the right

frictional
force acting

on the ground

frictional
force acting

on shoe

	■ Figure A2.23 We need friction to walk

Friction is very useful: without friction we would not be able to walk. Similarly, a car’s wheels 
would just spin on the same spot if there was no friction. Figure A2.23 explains why (the vertical 
forces are not shown). Because of friction, the shoe is able to push backwards, to the left, parallel 
to the ground, at the same time an equal frictional force pushes the shoe forward, to the right. 
(This is an example of Newton’s third law of motion, which is discussed later in this topic.)

The roughness of both surfaces (see Figure A2.24) is certainly an important factor in producing 
friction: rougher surfaces generally increase friction, but this is not always true. For example, 
there may be considerable friction between very flat and smooth surfaces, like two sheets of glass. 
Friction can often be reduced by placing a lubricant, such as oil or water, between the surfaces.

Figure A2.25 shows a basic laboratory investigation of the frictional forces between a wooden 
block and a horizontal table top.

F

Ff

wooden block force meter
pullA

B

	■ Figure A2.26 Variation of friction with 
applied force
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	■ Figure A2.24 Even smooth 
surfaces have irregularities

	■ Figure A2.25 A simple experiment to measure frictional forces

 ◆ Friction Resistive 
forces opposing relative 
motion. Occurs between 
solid surfaces, but also 
with fluids. Static friction 
prevents movement, 
whereas dynamic friction 
occurs when there is 
already motion.
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A.2   Forces and momentum 43

As the applied force (pull) is increased, the block will remain stationary until the force reaches a 
certain value, Fmax. The block then starts to move, but after that, a steady force, which is less than 
Fmax, will maintain a motion at constant speed. See Figure A2.26.

While the block is stationary (static) the force of friction adjusts, keeping equal to any applied 
force, but in the opposite direction. Under these circumstances the friction is called static friction. 
The size of the static friction force can increase from zero to a maximum value, Fmax. Once an 
object is moving, the reduced friction is called dynamic friction, and its value is approximately 
constant at different speeds.

Figure A2.27 illustrates how frictional forces can change as a pulling force is increased.
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limiting
static

friction
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pull

F
f

dynamic
friction

accelerating

	■ Figure A2.27 How frictional forces change as the force applied increases

The arrangement shown in Figure A2.25 can also be used to investigate how the 
maximum value of static friction depends on the force pushing the surfaces together: 
weights can be added on top of the block to increase the normal contact force, FN. 
Figure A2.28 shows some typical results.

The graph shows that there is more static friction when there is a greater force 
pushing the surfaces together. In fact, frictional forces, Ff, are proportional to the 
normal contact forces, FN. (Ff ∝ FN) The constant of proportionality equals the 
gradient of the graph and is called the coefficient of friction, μ (no units)

Just before motion begins: Ff = Fmax = μsFN, where μs is the coefficient of 
static friction.

When there is no movement, static frictional force: Ff  μsFN.

Table A2.1 shows some typical values for the coefficient of static friction between 
different materials. ◆ Coefficient of friction, μ  

Constants used to represent 
the amount of friction 
between two different 
surfaces. Maybe static 
or dynamic.
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	■ Figure A2.28 Typical variation of 
maximum static frictional force with 
normal force (a similar pattern of results 
will be obtained for dynamic friction)
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44 Theme A: Space, time and motion

	■ Table A2.1 Approximate values for coefficients of static friction

Materials Approximate coefficients of static friction, μs

steel ice 0.03

ski dry snow 0.04

TeflonTM steel 0.05

graphite steel 0.1

wood concrete 0.3

wood metal 0.4

rubber tyre grass 0.4

rubber tyre road surface (wet) 0.5

glass metal 0.6

rubber tyre road surface (dry) 0.8

steel steel 0.8

glass glass 0.9

skin metal 0.9

When there is movement, dynamic frictional force, Ff = μdFN, where μd is the coefficient of 
dynamic friction.

Tool 3: Mathematics

Applying general mathematics: constants

A number which is assumed to be constant always has the same value under the specified 
circumstances. For example, the spring constant described earlier in this topic represents 
the properties of a spring, but only up to its limit of proportionality. In Topic A.1, the 
acceleration due to gravity was assumed to be constant at 9.8 m s−2, but only if we limit 
precision to 2 significant figures and only apply it to situations close to the Earth’s surface.

However, there are a few constants which are believed to have exactly the same value in all 
locations and for all time. They are called the fundamental constants, or universal constants. 
Two examples are the speed of light and the charge on an electron.

In general, a coefficient is a number (usually a constant) placed before a variable in an 
algebraic expression. For example, in the expression 5a − 2 = 8, the number 5 is described 
as a coefficient. In physics, a coefficient is used to characterize a physical process under 
certain specified conditions.

We have seen that: dynamic frictional force, Ff = coefficient of dynamic friction × FN

Another example (which is not in the IB course): when a metal rod is heated it expands so 
that increase in length for each 1 °C temperature rise  
= coefficient of thermal expansion × original length.

 ◆ Constant A number 
which is assumed to have 
the same numerical value 
under a specified range 
of circumstances. 

 ◆ Fundamental constants 
Numbers which are 
assumed to have exactly 
the same numerical values 
under all circumstances 
and all times. 

 ◆ Coefficient A 
multiplying constant 
placed before a 
variable, indicating a 
physical property. 

Objects also experience friction when they move through liquids and gases (fluids). This is 
discussed in the next section.

DB
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A.2   Forces and momentum 45

 ATL A2A: Research skills 

Using search engines and libraries effectively

Tyres and road safety

Much of road safety is dependent on the nature of road surfaces 
and the tyres on vehicles. Friction between the road and a vehicle 
provides the forces needed for any change of velocity – speeding 
up, slowing down, and changing direction. Smooth tyres will 
usually have the most friction in dry conditions, but when the 
roads are wet, ridges and grooves in the tyres are needed to 
disperse the water (Figure A2.29).

To make sure that road surfaces produce enough friction, they 
cannot be allowed to become too smooth and they may need to 
be resurfaced every few years. This is especially important on 
sharp corners and hills. Anything that gets between the tyres 
and the road surface – for example, oil, water, soil, ice and snow 
– is likely to affect friction and may have a significant effect on 
road safety. Increasing the area of tyres on a vehicle will change 
the pressure underneath them and this may alter the nature of 
the contact between the surfaces. For example, a farm tractor 
may have a problem about sinking into soft ground, and such a 

situation is more complicated than simple friction between two 
surfaces. Vehicles that travel over soft ground need tyres with 
large areas to help avoid this problem.

Using a search engine, research online to find what materials are 
used in the construction of tyres and road surfaces to produce 
high coefficients of friction. Organize your data in a table, 
making sure to credit your sources using a recognized, standard 
method of referencing and citation.

	■ Figure A2.29 Tread on a car tyre
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a Determine the coefficient of friction for the two surfaces represented in the graph 
shown in Figure A2.28.

b Assuming the results were obtained for apparatus like that shown in Figure A2.25, 
calculate the minimum force that would be needed to move a block of total mass:
i 200 g
ii 2000 g.
iii Suggest why the answer to part ii is unreliable.

c Estimate a value for the dynamic frictional force acting on a mass of 200 g with the 
same apparatus:
i for movement at 1.0 m s−1

ii for movement at 2.0 m s−1.

Answer

a μs =  
Fmax

FN
 = 

4.0
10.0 = 0.40 (This is equal to the gradient of the graph.)

b i Ff = μsFN = μsmg = 0.40 × 0.200 × 9.8 = 0.78 N
ii 0.40 × 2.000 × 9.8 = 7.8 N
iii Because the answer is extrapolated from well outside the range of experimental 

results shown on the graph.
c i We would expect the dynamic frictional force to be a little less than the static 

frictional force, say about 0.6 N instead of 0.78 N.
ii The dynamic frictional force is usually assumed to be independent of speed, so the 

force would still be about 0.6 N at the greater speed.

 WORKED EXAMPLE A2.4

Common 
mistake
Many students expect 
that, if the block in 
Figure A2.25 was 
rotated so that side B 
was in contact with the 
table (instead of the 
side parallel to A), there 
would be more friction 
because of the greater 
area of contact. However, 
the frictional force will 
remain (approximately) 
the same, because if, 
for example, the area 
doubles, the force acting 
down on each cm2 
will halve.
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46 Theme A: Space, time and motion

Use data from Table A2.1 where necessary.

14 If dynamic friction is 85% of the maximum static friction, 
estimate the frictional force acting on the steel skates of a 
47 kg ice-skater moving across the ice.

15 A 54 kg wooden box is on a horizontal concrete floor.
a Estimate the minimum force required to start it 

sliding sideways.
b  Suggest why your answer to part a may not 

be reliable.
c If a force of 120 N keeps the box moving at a constant 

speed, what is the coefficient of dynamic friction?
d What will happen to the box if the applied force 

increases above 120 N?

16 a Predict the maximum frictional force possible 
between a dry road surface and each tyre of a 
stationary, 1500 kg four-wheeled family car. 

b Why will the force be less if the road is wet or icy?
c Discuss how roads can be made safer under 

icy conditions.

17 Figure A2.30 shows the front of a Formula One racing 
car. Suggest how this design helps to increase the friction 
between the tyre and the race track.

	■ Figure A2.30 Front of a Formula One racing car

18 A book of mass 720 g is being held in place next to a 
vertical wall as shown in Figure A2.31.
a State the weight of the book.
b Suggest an approximate value for the coefficient of 

static friction between the book and the wall.
c Use your answer to part b to estimate the minimum 

force needed to keep the book stationary against 
the wall.

	■ Figure A2.31 Book being held next to a vertical wall

Friction of objects with air and liquids

SYLLABUS COVERAGE

 Viscous drag force, Fd, acting on a small sphere opposing its motion through a fluid as given by:
 Fd = 6πηrv, where η is the fluid viscosity, r is the radius of the sphere and v is the velocity of the 

sphere through the fluid.

Air resistance was briefly discussed in Topic A.1. The word drag is widely used to describe 
friction in air and liquids. We will use the symbol Fd for this type of force.
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A.2   Forces and momentum 47

There are a great number of applications of this subject, including moving 
vehicles, sports and falling objects. Wind tunnels are useful in the study 
of drag: the object is kept stationary while the speed of air flowing past it 
is varied. The flow of the air can be marked as shown in Figure A2.32.

Drag can be a complicated subject because the amount of drag 
experienced by an object moving through air, or a liquid, depends on 
many factors, including the object’s size and shape, the nature of its 
surface, its speed v, and the nature of the fluid. Drag will also depend on 
the cross-sectional area of the object (perpendicular to its movement).

Typically, for small objects moving slowly Fd ∝ v.

But for larger objects, moving more quickly, Fd ∝ v2.

	■ Viscosity and Stokes’s law
When an object moves through a fluid it has to push the fluid out of its path. A fluid’s resistance 
to such movement is called its viscosity. Clearly, greater viscosity will tend to increase drag, and 
when this is the dominant factor, we refer to viscous drag.

Viscosity is given the symbol η (eta) and has the SI unit of Pa s (kg m−1 s−1). Some typical values at 
20 °C are given in Table A2.2. Viscosities of liquids can be very dependent on temperature.
	■ Table A2.2 Viscosities of some fluids

Fluid Viscosity η/Pa s

‘heavy’ oil 0.7

‘light’ oil 0.1

water 1 × 10−3

human blood 4 × 10−3

gasoline (petrol) 6 × 10−4

air 1.8 × 10−5

In order to understand this further, we start by simplifying the situation, as is common in physics: 
by considering a smooth spherical object, of radius r, moving at a speed v, which is not great 
enough to cause turbulence (irregular movements) in the fluid.

Under these circumstances, the viscous drag, Fd, can be determined from the following equation 
(known as Stokes’s law):

viscous drag Fd = 6πηrv

Dropping small spheres through fluids is a widely used method for determining their viscosities 
and how they may depend on temperature. A method is shown in Figure A2.33, in which an 
electronic timer is started and stopped as the metal ball passes through the two light gates.

Inquiry 1: Exploring and designing

Designing

Look at the apparatus setup in Figure A2.33. Apply what you know about terminal 
speed (Topic A.1) and viscous fluid flow to design and explain a valid methodology for 
an experiment to obtain a single set of measurements. Include an explanation of:
1 why the metal ball is released such that it passes through some oil before reaching 

the first timing gate
2 why the tube should be as wide as possible.

	■ Figure A2.32 Flow of air past a tennis ball in a wind tunnel.

 ◆ Viscosity Resistance of 
a fluid to movement. 

 ◆ Viscous drag The drag 
force acting on a moving 
object due to the viscosity 
of the fluid through which 
it is moving. 

 ◆ Turbulence Flow of a 
fluid which is erratic and 
unpredictable. 

 ◆ Stokes’s law Equation 
for the viscous drag acting 
on a smooth, spherical 
object undergoing 
non-turbulent motion. 
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	■ Figure A2.33 Experiment to 
determine the viscosity of a liquid
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48 Theme A: Space, time and motion

If a sphere of mass m and radius r is moving with a constant terminal speed, vt, then the upwards 
and downwards forces on it are balanced, as shown in Figure A2.34.

viscous drag, Fd + buoyancy force, Fb = weight, mg:

6πηrv + ρVg = mg

but:

V = 
4
3

πr3

so:

6πηrv + 
4
3

ρgπr3 = mg

If the mass and radius of the sphere are measured and the terminal speed determined as shown in 
Figure A2.33, then this equation can be used to determine a value for the viscosity of the liquid, 
assuming that its density is known.

Inquiry 3: Concluding and evaluating

Evaluating

The experimental determination of a viscosity discussed above involved just one set of 
measurements and a calculation.

Explain improvements to increase the accuracy of the determination of the viscosity of a 
liquid by collecting sufficient data to enable a graph of the results to be drawn.

Calculate the force of viscous drag on a sphere of radius 1.0 mm moving at 1.0 cm s−1 

through ‘heavy’ oil.

Answer
Fd = 6π × η × r × v = 6 × 3.14 × 0.7 × (1.0 × 10–3) × (1.0 × 10–2) = 1.3 × 10–4 N

 WORKED EXAMPLE A2.5

19 The air resistance acting on a car moving at 5.0 m s−1 
was 120 N.

 Assuming that this force was proportional to the speed 
squared, what was the air resistance when the car’s speed 
increased to:
a 10 m s−1 b 15 m s−1?

20 Show that the units of viscosity are Pa s.

21 Calculate the viscous drag force acting on a small metal 
sphere of radius 1.3 mm falling through oil of viscosity 
0.43 Pa s at a speed of 7.6 cm s−1.

22 A drop of water in a cloud had a mass of 0.52 g and 
radius of 0.50 mm (and volume of 0.52 mm3). 
a Assuming that the density of the surrounding air is 

1.3 kg m−3, calculate and compare the size of the three 

forces acting on the drop if it has just started to fall 
with a speed of 5.0 cm s−1.

b  Draw an annotated diagram to display your answers.
c  Determine the subsequent movement of the drop.

23 In an experiment similar to that shown in Figure A2.33, 
a sphere of radius 8.9 mm and mass 3.1 g reached a 
terminal speed of 7.6 cm s−1 when falling through an oil of 
density 842 kg m−3.

 Determine a value for the viscosity of the liquid.

24 Use the internet to find out how the design of golf balls 
reduces drag forces in flight. Write a 100 word summary 
of your findings.

mg

Fd

Fb

	■ Figure A2.34 Forces 
on a sphere falling with 
terminal speed

DB
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A.2   Forces and momentum 49

 ATL A2B: Thinking skills 

Evaluating and defending ethical positions

Air travel
Aircraft use a lot of fuel moving passengers and goods from place 
to place quickly, but we are all becoming more aware of the effects 
of planes on global warming and air pollution. Some people think 
that governments should put higher taxes on the use of planes to 
discourage people from using them too much. Improving railway 
systems, especially by operating trains at higher speeds, will also 
attract some passengers away from air travel. Of course, engineers 
try to make planes more efficient so that they use less fuel, but the 
laws of physics cannot be broken and jet engines, like all other heat 
engines, cannot be made much more efficient than they are already.
Planes will use a lower fuel if there is a lower air resistance 
acting on them. This can be achieved by designing planes with 
streamlined shapes, and also by flying at greater heights where 
the air is less dense. Flying more slowly than their maximum 
speed can also reduce the amount of fuel used for a particular 
trip, as it does with cars, but people generally want to spend as 
little time travelling as possible.
The pressure of the air outside an aircraft at its typical cruising 
height is far too low for the comfort and health of the passengers 
and crew, so the air pressure has to be increased inside the 
airplane, but this is still much lower than the air pressure near 
the Earth’s surface. The difference in air pressure between the 
inside and outside of the aircraft would cause problems if the 
airplane had not been designed to withstand the extra forces.

Aircraft generally carry a large mass of fuel, and the weight of 
an aircraft decreases during a journey as the fuel is used up. 
The upwards force supporting the weight of an aircraft in flight 
comes from the air that it is flying through and will vary with 
the speed of the airplane and the density of the air. When the 
aircraft is lighter towards the end of its journey it can travel 
higher, where it will experience less air resistance.
Debate the issue in class. Break into groups. One group can 
represent the airline operators, another group can represent 
passengers, a third group can represent an environmental 
campaign group, while a fourth group could represent the 
government. In your groups, allocate roles for researchers 
and a spokesperson. Using the information above and your 
understanding of air resistance prepare a proposal from the point 
of view of your assigned group detailing different ways in which 
we can reduce the environmental impact of air travel.
To help your research and calculations, refer to the following 
guiding questions:
l How do airlines hope that in the future they can become 

‘carbon neutral’. What is ‘SAF’?
l Find out how much fuel is used on a long-haul flight of, say, 

12 hours.
l Compare your answer with the capacity of the fuel tank on an 

average sized car.
l On a short-haul flight it is often claimed that as much of 50% 

of an aircraft’s fuel might be used for taxiing, taking off, 
climbing and landing, but on longer flights this can reduce to 
under 15%. Explain the difference.

 ◆ Streamlined Having a 
shape that reduces the drag 
forces acting on an object 
that is moving through 
a fluid.

 ◆ Field (gravitational, 
electric or magnetic) 
A region of space in which 
a mass (or a charge, or 
a current) experiences a 
force due to the presence of 
one or more other masses 
(charges, or currents – 
moving charges).

Field forces

SYLLABUS CONTENT

 The nature and use of the following field forces.
– Gravitational force, Fg, as the weight of the body and calculated as given by: Fg = mg
– Electric force Fe

– Magnetic force Fm

These three forces are very important in the study of physics but, apart from the gravitational 
force of weight, knowledge about them is not required in this topic.

These forces can act across empty space, without the need for any material in between. This can 
be difficult for the human mind to accept. One way of increasing our understanding is to develop 
the concept of force fields surrounding masses (gravitational fields), charges (electric fields) and 
magnets / electric currents (magnetic fields). Using this concept, we can give numerical values 
to points in space, for example, by stating that the gravitational field strength at the height of a 
particular satellite’s orbit is 8.86 N kg−1.

LINKING QUESTION
l How can knowledge 

of electrical and 
magnetic forces allow 
the prediction of 
changes to the motion 
of charged particles?

This question links 
to understandings in 
Topic D.3.
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50 Theme A: Space, time and motion

Free-body diagrams

SYLLABUS CONTENT

 Forces acting on a body can be represented in a free-body diagram.

Even the simplest of force diagrams can get confusing if all the forces are shown. To make the 
diagrams simpler we usually draw only one object and show only the forces acting on that one 
object. These drawings are called free-body diagrams. (Physicists use the words ‘body’ and 
‘object’ interchangeably.) Some simple examples are shown in Figure A2.35.

weight

weight

tension

weight

friction pulling force

Earth

force of
gravity

normal force

normal force

a  A box on the ground

c  A swinging pendulum d  A box pulled along the ground
    (at constant speed)

b  The Moon orbiting the Earth

Moon

	■ Figure A2.35 Free-body diagrams; the object has a solid outline and the forces are shown in red

The diagrams are often further simplified by representing the object as a small square, or circle, 
and considering it to be a point particle / mass.

Nature of science: Models

Point objects, particles and masses

A point particle is an idealized, simplified representation of any object, whatever its actual size and 
shape. As the name suggests, a point particle does not have any dimensions, or occupy any space. 
Typically, the ‘point’ will be located at the centre of mass of the object.

When the concept is used, we do not need to consider the complications and variations that are involved 
with extended objects. For example, if we consider an object as a point particle, all forces act through the 
same point and analysis can ignore any possible rotational effects caused by the forces acting on it.

 ◆ Free-body diagram 
Diagram showing all the 
forces acting on a single 
object, and no other forces.

 ◆ Point particle, mass or 
charge Theoretical concept 
used to simplify the 
discussion of forces acting 
on objects (especially 
in gravitational and 
electric fields).
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A.2   Forces and momentum 51

	■ Resultant forces and components

SYLLABUS CONTENT

 Free-body diagrams can be analysed to find the resultant force on a system.

Tool 3: Mathematics

Add and subtract vectors in the 
same plane

Vector addition is an important mathematical 
skill that occurs in several places in the IB 
Physics course, but the addition of forces is 
the most common application. Figure A2.36 
shows an example of how to find the 
resultant of two force vectors.

A resultant force is represented in size 
and direction by the diagonal of the 
parallelogram (or rectangle) which has the 
two original force vectors as adjacent sides.

R2

R1

resultant
force, R1 + R2

	■ Figure A2.36 Adding two forces to determine 
a resultant

Tool 3: Mathematics

Resolve vectors

As we have seen, two forces can be 
combined to determine a single resultant. 
The ‘opposite’ process is very useful: a 
single force, F, can be considered as being 
equivalent to two smaller forces at right 
angles to each other. The two separate 
forces are called components.

This process is called resolving a force into 
two components. It can be used when the 
original force is not acting in a direction which 
is convenient for analysis. Because the two 
components are perpendicular to each other 
their effects can be considered separately. 
Figure A2.37 shows how a force can be 
resolved into two perpendicular components.

F cos θ

F 
si

n 
θ F

θ

	■ Figure A2.37 Force, F, resolved into two components

Any force, F, can be resolved into two 
independent components which are 
perpendicular to each other:

Fsin θ and Fcos θ

 ◆ Resultant force The 
vector sum of the forces 
acting on an object, 
sometimes called the 
unbalanced or net force.

 ◆ Resultant The single 
vector that has the same 
effect as the combination 
of two or more 
separate vectors.

 ◆ Components (of a 
vector) Any single vector 
can be considered as having 
the same effect as two parts 
(components) perpendicular 
to each other.

 ◆ Inclined plane Flat 
surface at an angle to 
the horizontal (but not 
perpendicular). A simple 
device that can be used to 
reduce the force needed 
to raise a load; sometimes 
called a ramp. 
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52 Theme A: Space, time and motion

a Draw a free-body diagram for an object which is 
stationary on a slope (inclined plane) which makes an 
angle of 35° with the horizontal.

b The object has a mass of 12.7 kg and just begins 
to slide down the slope if the angle is 35°. Using 
g = 9.81 N kg–1, calculate the component of the weight 
for this angle:
i down the slope
ii perpendicular into the slope.

c State values of the frictional force and the normal 
force acting on the object.

d Determine the coefficient of static friction in 
this situation.

Answer
a See Figure A2.38, which represents the object as 

a point. The resultant contact force from the slope 
on the object must be equal and opposite to the 
weight, Fg. The 
contact force can 
be considered as 
the combination of 
two perpendicular 
components: FN 
perpendicular to 
the slope, and Ff, 
the frictional force 
stopping the object 
from sliding down 
the slope.

 Sometimes it is preferred to represent the object 
as more than just a point. See Figure A2.39 for an 
example. However, this may cause confusion about 
exactly where the forces act.

b See Figure A2.39.
 Component down slope mg sin 35° = 12.7 × 9.81 × 0.574 

= 71.5 N
 Component into slope = mg cos 35° = 12.7 × 9.81 × 0.819 

= 102 N

35°

mg cos35°
mg

mg sin35°

	■ Figure A2.39 Components of weight

c Frictional force equals component down the slope, but 
in the opposite direction = 71.5 N up the slope.

 Normal force equals component into the slope, but in 
the opposite direction = 102 N upwards.

d Ff = μsFN

 μs =  
Ff

FN
 = 

71.5
102 = 0.70 (which is equal to tan θ)Ff

Fg

resultant
contact
force

object

FN

35°

	■ Figure A2.38 Free-body 
diagram for an object on a slope

WORKED EXAMPLE A2.6

25 Draw fully labelled free-body diagrams for:
a a car moving horizontally with a constant velocity
b an aircraft moving horizontally at constant velocity
c a boat decelerating after the engine has been 

switched off
d a car accelerating up a hill.

26 A wooden block of mass 2.7 kg rests on a slope which is 
inclined at 22° to the horizontal.
a Make calculations which will enable you to draw 

a free-body diagram, similar to Figure A2.38, but 
giving numerical values for the forces.

b If the angle is increased, the block will slide down the 
slope. Calculate the coefficient of friction.

c State whether your answer to part b is for static or 
kinetic friction.

27 A pendulum on the end of a string has a mass of 158 g.
a Draw a free-body diagram representing the situation 

when the string is making an angle of 20° to 
the vertical.

b By adding components of weight to your diagram, 
show that the tension in the string is 1.5 N.

c What effect does the other component (mg sin θ) have 
on the pendulum?

d Discuss how the tension in the string changes while 
the pendulum is swinging from side to side.
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A.2   Forces and momentum 53

28 Parallel forces of 1 N, 2 N and 3 N can act on an object 
at the same time. State the values of all the possible 
resultant forces.

29 Calculate the resultant force (size and direction) of 4.7 N 
and 5.9 N which are perpendicular to each other and 
acting away from a point mass.

30 Show that a mass on an inclined plane will just begin to 
slip down the slope when the tangent of the angle to the 
horizontal equals the coefficient of static friction.

31 Determine by 
scale drawing or 
calculation the 
size and direction 
of the resultant 
force acting on 
the hook shown in 
Figure A2.40.

25°
200 N

500 N

45°

	■ Figure A2.40

Newton’s laws of motion

SYLLABUS CONTENT

 Newton’s three laws of motion.

Newton’s three laws of motion are among the most famous in classical physics. They describe 
the relationships between force and motion. Although they were first stated more than three 
hundred years ago, they are equally important today and are essential for an understanding of all 
motion (except when a speed of motion is close to the speed of light, as discussed in Topic A.5).

	■ Newton’s first law of motion

Newton’s first law of motion states that an object will remain at rest or continue to move in a 
straight line at a constant speed, unless a resultant force acts on it.

In other words, a resultant force will produce an acceleration (change in velocity).

When the influences on any system are balanced, so that the system does not change, we describe 
it as being in equilibrium. (As another example, if an object stays at the same temperature, we say 
that it is in thermal equilibrium.)

When there is no resultant force on an object, we say that it is in translational equilibrium.

The term translational refers to movement from place to place. An object is in translational 
equilibrium if it remains at rest or continues to move with a constant velocity (in a straight line at a 
constant speed), as described by Newton’s first law.

In passing, it should be noted that, if equal forces act in opposite directions, an object will be in 
translational equilibrium, but if the forces are not aligned (see Figure A2.41) then the object may 
start to rotate, so it will not be in rotational equilibrium. The subject of rotational dynamics is 
covered in Topic A.4.

 ◆ Newton’s laws of 
motion First law: an 
object will remain at rest, 
or continue to move in a 
straight line at a constant 
speed, unless a resultant 
force acts on it; Second 
law: acceleration is 
proportional to resultant 
force; Third law: 
whenever one body exerts 
a force on another body, 
the second body exerts 
exactly same force on 
the first body, but in the 
opposite direction.

 ◆ Balanced forces If an 
object is in mechanical 
equilibrium, we describe 
the forces acting on it 
as ‘balanced’.

 ◆ Equilibrium An object 
is in equilibrium if it is 
unchanging under the action 
of two or more influences 
(e.g. forces). Different types 
of equilibrium include 
translational, rotational 
and thermal.

 ◆ Translational Changing 
position.

F

F

	■ Figure A2.41 The object 
is in translational equilibrium, 
but not in rotational 
equilibrium
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54 Theme A: Space, time and motion

Nature of science: Observations

Natural philosophy

‘Forces are needed to keep an object moving and, without those forces, movement will stop.’ This 
accepted ‘fact’ is not true, but it is still widely believed. It was the basis of theories of motion from 
the time of Aristotle (about 2350 years ago) until the seventeenth century, when scientists began to 
understand that the forces of friction were responsible for stopping movement.

Aristotle is one of the most respected figures in the early development of human thought. He 
appreciated the need for wide-ranging explanations of natural phenomena but the ‘science’ of 
that time – called natural philosophy – did not involve careful observations, measurements, 
mathematics or experiments.

Aristotle believed that everything in the world was made of a combination of the four elements 
of earth, fire, air and water. The Earth was the centre of everything and each of the four Earthly 
elements had its natural place. When something was not in its natural place, then it would tend to 
return – in this way he explained why rain falls, and why flames and bubbles rise, for example.

Modern science (characterized by experimentation and the development of unbiased, testable 
theories) began in the seventeenth century. It includes the work of famous physicists mentioned 
in this topic: Hooke, Galileo and Newton.

	■ Figure A2.42 A representation of 
Aristotle

Examples of translational equilibrium

Because all objects on Earth have weight, it is not possible for an object to be in equilibrium 
because there are no forces acting on it. So, all translational equilibrium arises when two or more 
forces are balanced.

air resistance / drag, Fd

normal contact
forcenormal contact

force

force from
road

weight

	■ Figure A2.43 A cyclist moving at constant speed in translational 
equilibrium

l A book on a horizontal table (Figure A2.8) is in 
equilibrium because its downwards weight is balanced by 
the upwards normal contact force.

l A stationary block on a slope (Figures A2.38 and A2.39) is 
in equilibrium because the component of its weight down 
the slope is balanced by surface friction up the slope and 
the component of its weight into the slope is balanced by 
the normal component of the contact force.

l A cyclist moving with constant speed (Figure A2.43) is in 
equilibrium because their weight is balanced by the sum 
of the two normal contact forces and the frictional force 
from the road is balanced by the drag.

Falling through the air at terminal speed
Figure A2.44 shows three positions of a falling ball. In part a the ball is just starting to move 
and there is no air resistance / drag. In part b the ball has accelerated and has some air resistance 
acting against its motion, but there is still a resultant force and an acceleration downwards. In 
part c the speed of the falling ball has increased to the point where the increasing air resistance 
has become equal and opposite to the weight. There is then no resultant force and the ball is in 
translational equilibrium, falling with a constant velocity called its terminal velocity or terminal 
speed. (Any buoyancy forces are considered to be negligible under these circumstances.) Terminal 
speed was introduced in Topic A.1.

weight
weight

air
resistance

air
resistance

weight

a b c

weight
weight

air
resistance

air
resistance

weight

a b c

	■ Figure A2.44 The resultant 
force on a falling object 
changes as it gains speed

 ◆ Natural philosophy 
The name used to describe 
the (philosophical) study 
of nature and the universe 
before modern science.
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A.2   Forces and momentum 55

Three forces in equilibrium
If two forces are acting on an object such that it is not in equilibrium, then to produce equilibrium 
a third force can be added that is equal in size to the resultant of the other two, but in the opposite 
direction. All three forces must act through the same point. For example, Figure A2.45 shows a 
free-body diagram of a ball on the end of a piece of string kept in equilibrium by a sideways pull 
that is equal in magnitude to the resultant of the weight and the tension in the string.

The translational equilibrium of three forces can be investigated in the laboratory simply by 
connecting three force meters together with string just above a horizontal surface, as shown in 
Figure A2.46. The three forces and the angles between them can be measured for a wide variety of 
different values, each of which maintains the system stationary.

pull – this force
can keep the ball

in equilibrium

resultant of
tension and weight

tension

weight

F1

F2

F3

	■ Figure A2.45 Three forces keeping a suspended ball in equilibrium 	■ Figure A2.46 Investigating three forces in equilibrium

A ladder is leaning against a wall, as shown 
in Figure A2.47. Friction at point P is 
stopping the ladder from slipping, but there 
is no need for any friction acting at point Q.

Q

P
    

	■ Figure 
A2.47 A ladder 
leaning against 
a wall

a Draw a free-body diagram of the ladder, 
including its weight and the normal 
force from the wall.

b The resultant force on the ladder from 
the ground must be directed at the point 
where the lines of action of the other 
two forces intersect. Add this line to 
your diagram.

c Complete the diagram by adding the 
two perpendicular components of the 
force from the ground on the ladder.

Answer

F N

F N

F f

F g

resultant force
of FN and Ff from

ground

	■ Figure A2.48

 WORKED EXAMPLE A2.7

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   55369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   55 04/01/2023   20:1204/01/2023   20:12

SAMPLE PAGES



56 Theme A: Space, time and motion

32 Under what circumstances will a moving car be in translational equilibrium?

33 If you are in an elevator (lift) without windows discuss whether it is possible to 
know if you are moving up, moving down or stationary. 

34 Figure A2.49 shows a mountain climber who, at that moment, is stationary. 
a Draw a free-body diagram that shows that he is in equilibrium.
b  Outline the features of your diagram which show that the climber is 

in equilibrium.

35 Can the Moon be described as being in translational equilibrium? Explain 
your answer.

	■ Figure A2.49

	■ Newton’s second law of motion
We have seen that Newton’s first law establishes that there is a connection between resultant 
force and acceleration. Newton’s second law takes this further and states the mathematical 
connection: when a resultant force acts on a (constant) mass, the acceleration is proportional to the 
resultant force: a ∝ F.

Both force and acceleration are vector quantities and the acceleration is in the same direction as 
the force.

Investigating the effects of different forces and different masses on the accelerations that they 
produce is an important part of most physics courses, although reducing the effects of friction is 
essential for consistent results.

Inquiry 1: Exploring and designing

Exploring

Aristotle’s understanding of motion was formed through making observations of the 
behaviour of objects in motion, but without any deep understanding of the concept of 
force he was unable to account for the effects of friction or air resistance. What methods 
are available for reducing friction in investigations into the effects of different forces and 
masses on an object’s acceleration?

In groups, brainstorm how experiments can be designed to reduce or to cancel the effects 
of frictional forces. Decide on a selection of search terms or phrases that can be used by 
individual students for internet research. Use your research to formulate a research question 
and hypothesis.

Such experiments also show that when the same resultant force is applied to different masses, the 
acceleration produced is inversely proportional to the mass, m: a ∝ 1/m

Combining these results, we see that acceleration, a ∝ 
F
m

.

Newton’s second law can be written as: F ∝ ma

If we define the SI unit of force, the newton, to be the force that accelerates 1 kg by 1 m s−2, then 
we can write: force (N) = mass (kg) × acceleration (m s−2)

Newton’s second law of motion: resultant force, F = ma
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A.2   Forces and momentum 57

This version of Newton’s second law assumes that the mass of the object is constant. We will see 
later in this topic that there is an alternative version which allows for changing mass.

When discussing a gravitational force, weight, we have used the symbol Fg and the acceleration 
involved is g, the acceleration of free fall.

So, the equation F = ma becomes the familiar:

Fg = mg

Tool 3: Mathematics

On a best-fit linear graph, construct lines of maximum and minimum gradients with relative 
accuracy (by eye) considering all uncertainty bars

Many basic physics experiments are aimed at 
investigating if there is a proportional relationship 
between two variables, and this is usually best checked by 
drawing a graph.

If two variables are (directly) proportional, then their 
graph will be a straight line passing through the origin

Figure A2.50 represents a proportional relationship. It is 
important to stress that a linear graph that does not pass 
through the origin does not represent proportionality 
(Figure A2.51).

x

gradient =

0
0

Δx

Δy

Δy
Δx

y

	■ Figure A2.50 A proportional relationship

x0
0

y

    

	■ Figure A2.51 A linear 
relationship that is not 
proportional does not pass 
through the origin. See 
also Tool 3: Mathematics 
(Understand direct and 
inverse proportionality) 
on page 129.

Uncertainty in gradients and intercepts

It is often possible to draw a range of different straight 
lines, all of which pass through the uncertainty bars 
representing experimental data.

We usually assume that the line of best fit is midway 
between the lines of maximum possible gradient and 
minimum possible gradient. Figure A2.52 shows an 
example (for simplicity, only the first and last error bars 
are shown, but in practice all the error bars need to be 
considered when drawing the lines).

0 1

Fo
rc

e/
N

Length/cm

greatest possible gradient

least possible
gradient

line of best fit

0
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70
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32 4 5 6 7 8

	■ Figure A2.52 Finding maximum and minimum gradients for a 
spring-stretching experiment

 ◆ Proportional 
relationship Two variables 
are (directly) proportional 
to each other if they always 
have the same ratio.

 ◆ Uncertainty bars 
Vertical and horizontal 
lines drawn through 
data points on a graph to 
represent the uncertainties 
in the two values.
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58 Theme A: Space, time and motion

Figure A2.52 shows how the length of a metal spring 
changed as the force applied was increased. We know 
that the measurements were not very precise because the 
uncertainty bars are large. The line of best fit has been 
drawn midway between the other two. This is a linear 
graph (a straight line) and it is known that the gradient of 
the graph represents the force constant (stiffness) of the 
spring and the horizontal intercept represents the original 
length of the spring. Taking measurements from the line 
of best fit, we can make the following calculations:

force constant = gradient = 
(90 – 0)

(6.6 – 1.9)
 = 19 Ncm−1

original length = horizontal intercept = 1.9 cm

To determine the uncertainty in the calculations of gradient 
and intercept, we need only consider the range of straight 
lines that could be drawn through the first and last error 
bars. The uncertainty will be the maximum difference 
between these extreme values obtained from graphs of 
maximum and minimum possible gradients and the value 
calculated from the line of best fit. In this example it can 

be shown that: force constant is between 14 Ncm−1 and 
28 Ncm−1, original length is between 1.1 cm and 2.6 cm.

The final result can be quoted as:  
force constant = 19 ± 9 Ncm−1, original length = 1.9 ± 0.8 cm. 
Clearly, the large uncertainties in these results confirm 
that the experiment lacked precision.

Table A2.3 shows the results that a student obtained 
when investigating the effects of a resultant force on a 
constant mass. Plot a graph of these readings, including 
uncertainty bars. Then draw lines of maximum and 
minimum gradients through the error bars. Finally, use 
your graph to determine the mass that the student used in 
the experiment and the uncertainty in your answer.
	■ Table A2.3

Resultant force, N, ± 0.5 N Acceleration, m s−2, ± 0.2 m s−2

1.0 0.7

2.0 1.3

3.0 2.0

4.0 2.8

5.0 3.3

6.0 4.1

Common mistake
Many students believe that the force involved when an object hits the ground is its weight. In reality, 
the force will depend on the nature of the impact. The longer the duration of the impact, the smaller the 
force, as explained below.

Non-mathematical applications of Newton’s second law

We can use Newton’s second law to explain why, for example, a glass will break when dropped on 
the floor, but may survive being dropped onto a sofa. A collision with the floor will be for a much 
shorter duration, which means the deceleration will be greater and (using F = ma) the force will be 
greater, and probably more destructive. Similar arguments can be used to explain how forces can 
be reduced in road accidents.

A car of mass 1450 kg is accelerated from rest by an 
initial resultant force of 3800 N.
a Calculate the acceleration of the car.
b If the force and acceleration are constant, what will its 

speed be after 4.0 s?
c Determine how far it will have travelled in this time.
d After 4.0 s the resistive forces acting on the car are 

1800 N. Show that the new force required to maintain 
the same acceleration is approximately 5.5 kN.

Answer

a a = 
F
m = 

3800
1450 = 2.62 m s–2

b v = u + at = 0 + (2.62 × 4.0) = 10.5 m s−1

c s = 
(u + v)

2  × t = 
(0 + 10.5)

2  × 4.0 = 21.0 m

d 3800 + 1800 = 5600 N ≈ 5500 N = 5.5 kN

 WORKED EXAMPLE A2.8

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   58369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   58 04/01/2023   20:1204/01/2023   20:12

SAMPLE PAGES



A.2   Forces and momentum 59

Figure A2.53 shows two masses attached by a string 
which passes over a fixed pulley. Assuming that there is 
no friction in the system and that the string has negligible 
mass, determine:
a the acceleration of the system
b the tension in the string.

500

100

fixed pulley

     
	■ Figure A2.53 Two masses attached by a 

string which passes over a fixed pulley

Answer
a The resultant force on the system of two masses = 

weight of the 500 g mass − weight of 100 g mass = 
(0.500 − 0.100) × 9.8 = 3.9 N

 a = 
F
m = 

3.9
(0.500 + 0.100) = 6.5 m s–2

 The 500 g mass will accelerate down while the 100 g 
mass accelerates up at the same rate.

b Consider the 100 g mass: the resultant force acting 
= tension, T, in the string upwards – weight acting 
downwards = T – (0.100 × 9.8) = T – 0.98

 F = ma
 (T – 0.98) = 0.100 × 6.5
 T = 1.6 N
 Equally, we could consider the 500 g mass: 

the resultant force acting =  
weight acting downwards − tension, T, in the string 
upwards =  
(0.500 × 9.8) − T = 4.9 − T

 F = ma
 (4.9 − T) = 0.500 × 6.5
 T = 1.6 N

 WORKED EXAMPLE A2.9

36 A laboratory trolley accelerated at 80 cm s−2 when a 
resultant force of 1.7 N was applied to it. What was 
its mass?

37 When a force of 6.4 N was applied to a mass of 2.1 kg 
on a horizontal surface, it accelerated by 1.9 m s–2. 
Determine the average frictional force acting on 
the mass.

38 When a hollow rubber ball of mass 120 g was dropped on 
a concrete floor the velocity of impact was 8.0 m s−1 and it 
reduced to zero in 0.44  s (before bouncing back).
a Calculate:

i the ball’s average deceleration
ii the average force exerted on the ball.

b Repeat the calculations for a solid steel ball of the 
same size, 10 times the mass, but with the same 
impact velocity. Assume that its speed reduced to 
zero in 0.080 s. 

c Outline why the steel ball can do more damage to a 
floor than the rubber ball.

39 A small aircraft of mass 520 kg needs to take off with a 
speed of 30 m s−1 from a runway in a distance of 200 m.
a Show that the aircraft needs to have an average 

acceleration of 2.3 m s−2.
b What average resultant force is needed during the 

take off?

40 Discuss why the forces on the long-jumper shown in 
Figure A2.54 are reduced because he is landing in sand.

	■ Figure A2.54 Impact in a sand-pit reduces force
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60 Theme A: Space, time and motion

41 a What resultant force is needed to accelerate a train of 
total mass 2.78 × 106 kg from rest to 20 m s−1 in 60 s?

b If the same train was on a sloping track which had an 
angle of 5.0° to the horizontal, what is the component 
of its weight parallel to the track?

c Suggest why railway designers try to avoid hills.

42 Calculate the average force needed to bring a 2160 kg car 
travelling at 21 m s−1 to rest in 68 m.

43 Use Newton’s second law to explain why it will hurt you 
more if you are struck by a hard ball than by a soft ball 
of the same mass and speed.

44 A trolley containing sand is pulled across a frictionless 
horizontal surface with a small but constant resultant 
force. Describe and explain the motion of the trolley if 
sand can fall through a hole in the bottom of the trolley.

45 A man of mass 82.5 kg is standing still in an elevator that 
is accelerating upwards at 1.50 m s−2.
a What is the resultant force acting on the man?
b What is the normal contact force acting upwards on 

him from the floor?

46 Figure A2.55 shows two masses connected by a light 
string passing over a pulley.
a Assuming there is no friction, calculate the 

acceleration of the two blocks.
b What resultant force is needed to accelerate the 2.0 kg 

mass by this amount?
c Draw a fully labelled free-body diagram for the 2 kg 

mass, showing the size and direction of all forces.

10 kg

2.0 kg

	■ Figure A2.55 Two masses connected by a light string passing over 
a pulley

47 Outline how air bags (and/or seat belts) reduce the 
injuries to drivers and passengers in car accidents.

Newton’s second law offers us a different way of understanding mass: larger masses accelerate 
less than smaller masses under the action of the same resultant force. So, mass can be considered 
as a measure of an object’s resistance to acceleration. Physicists use the term inertia to describe 
an object’s resistance to a change of motion.

Mass is a measure of inertia.

	■ Newton’s third law of motion
Whenever any two objects come in contact with each other, or otherwise interact, 
they exert forces on each other (Figure A2.56). Newton’s third law compares these 
two forces.

Newton’s third law of motion states that whenever one body exerts a force on 
another body, the second body exerts a force of the same magnitude on the first 
body, but in the opposite direction.

Essentially this law means that forces must always occur in equal pairs, although it is important to 
realize that the two forces must act on different bodies and in opposite directions, so that only one 
of each force pair can be seen in any free-body diagram. The two forces are always of the same 
type, for example gravity/gravity or friction/friction. Sometimes the law is quoted in the form 
used by Newton: ‘to every action there is an equal and opposite reaction’. In everyday terms, it is 
simply not possible to push something that does not push back on you. Here are some examples:
l If you pull a rope, the rope pulls you.
l If the Earth pulls a person, the person pulls the Earth (Figure A2.57).
l If a fist hits a cheek, the cheek hits the fist (Figure A2.58).

 ◆ Inertia Resistance to a 
change of motion. Depends 
on the mass of the object. 

FB FA

A

point of contact

B

	■ Figure A2.56 When two bodies interact, 
FA = –FB
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